Architectural design of anode materials for superior alkali-ion (Li/Na/K) batteries storage

  • Sharma, R. & Kumari, A. Potential applications of biorenewable nanocomposite materials for electrocatalysis, energy storage, and wastewater treatment. In Biorenewable Nanocomposite Materials, Vol. 1: Electrocatalysts and Energy Storage 25–46 (ACS Publications, 2022).

    Chapter 

    Google Scholar
     

  • Poizot, P. et al. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 20, 6490–6557 (2020).

    Article 

    Google Scholar
     

  • Cheng, F. et al. Functional materials for rechargeable batteries. Adv. Mater. 23, 1695–1715 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z. et al. Rechargeable batteries for grid scale energy storage. Chem. Rev. 122, 16610–16751 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. A review of technologies and applications on versatile energy storage systems. Renew. Sustain. Energy Rev. 148, 111263 (2021).

    Article 

    Google Scholar
     

  • Mohan, I. et al. Potential of potassium and sodium-ion batteries as the future of energy storage: Recent progress in anodic materials. J. Energy Storage 55, 105625 (2022).

    Article 

    Google Scholar
     

  • Griffiths, G. Review of developments in lithium secondary battery technology. Underw. Technol. 33, 153–163 (2016).

    Article 

    Google Scholar
     

  • Liu, Q. et al. Low cost and superior safety industrial grade lithium dual-ion batteries with a second life. Energy Technol. 6(10), 1994–2000 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dehghani-Sanij, A. R. et al. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 104, 192–208 (2019).

    Article 

    Google Scholar
     

  • Braun, P. V. et al. High power rechargeable batteries. Curr. Opin. Solid State Mater. Sci. 16, 186–198 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Design of black phosphorous derivatives with excellent stability and ion-kinetics for alkali metal-ion battery. Energy Storage Mater. 35, 283–309 (2021).

    Article 

    Google Scholar
     

  • Xu, Z.-L. et al. Graphitic carbon materials for advanced sodium-ion batteries. Small Methods 3, 1800227 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gong, Y. et al. Metal selenides anode materials for sodium ion batteries: Synthesis, modification, and application. Small 19, 2206194 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Z. et al. Sustainable electric vehicle batteries for a sustainable world: Perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy. Adv. Energy Mater. 12, 2200383 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Eftekhari, A. Lithium batteries for electric vehicles: From economy to research strategy (2019).

  • Desaulty, A.-M. et al. Tracing the origin of lithium in Li-ion batteries using lithium isotopes. Nat. Commun. 13, 4172 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, P. et al. A materials perspective on direct recycling of lithium-ion batteries: Principles, challenges and opportunities. Adv. Funct. Mater. 33, 2213168 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tian, Y. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Song, K. et al. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 174, 1903194 (2021).

    Article 

    Google Scholar
     

  • Du, P. et al. Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries. Renew. Sustain. Energy Rev. 151, 111640 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, M. R. et al. Next generation 2D materials for anodes in battery applications. J. Power Sources 556, 232256 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hao, H. et al. Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal–sulfur and selenium batteries. Chem. Rev. 122, 8053–8125 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Z.-X. et al. Advanced layered oxide cathodes for sodium/potassium-ion batteries: Development, challenges and prospects. Chem. Eng. J. 452, 139438 (2022).

    Article 

    Google Scholar
     

  • Yuan, D. et al. Atomically thin materials for next-generation rechargeable batteries. Chem. Rev. 122, 957–999 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 382, 123050 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xu, L. et al. V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries. Chem. Eng. J. 419, 129607 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Z. et al. Defective Bi2S3 anchored on CuS/C as an ultrafast and long-life anode for sodium-ion storage. ACS Appl. Mater. Interfaces 15(3), 4011–4020 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. & Ye, Z. Nitroaromatics as high-energy organic cathode materials for rechargeable alkali-ion (Li+, Na+, and K+) batteries. Adv. Energy Mater. 11(4), 2003281 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eom, K. et al. Crystalline chlorinated contorted hexabenzocoronene: A universal organic anode for advanced alkali-ion batteries. J. Mater. Chem. A 9(36), 20607–20614 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y. et al. Storage mechanism of alkali metal ions in the hard carbon anode: An electrochemical viewpoint. ACS Appl. Mater. Interfaces 13(32), 38441–38449 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao, Y. et al. Heterostructured WS2/MoS2@ carbon hollow microspheres anchored on graphene for high-performance Li/Na storage. Chem. Eng. J. 443, 136080 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Surface modification and in situ carbon intercalation of two-dimensional niobium carbide as promising electrode materials for potassium-ion batteries. Chem. Eng. J. 431, 133838 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ge, H. et al. In situ growth of CoSe2 coated in porous carbon layers as anode for efficient sodium-ion batteries. Energy Technol. 9(3), 2001074 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Qin, T. et al. Mechanistic insights into the electrochemical Li/Na/K-ion storage for aqueous bismuth anode. Energy Storage Mater. 45, 33–39 (2022).

    Article 

    Google Scholar
     

  • Yuan, Z. et al. Composites of NiSe2@C hollow nanospheres wrapped with Ti3C2Tx MXene for synergistic enhanced sodium storage. Chem. Eng. J. https://doi.org/10.1016/j.cej.2021.132394 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Ultra-small few-layered MoSe2 nanosheets encapsulated in nitrogen-doped porous carbon nanofibers to create large heterointerfaces for enhanced potassium-ion storage. Appl. Surf. Sci. 601, 154196 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sun, N. et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 29, 1906282 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dou, M. et al. Simultaneous cation-anion regulation of sodium vanadium phosphate cathode materials for high-energy and cycle-stable sodium-ion batteries. J. Power Sources 560, 232709 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sun, J. et al. Assembly of flower-like VS2/N-doped porous carbon with expanded (001) plane on rGO for superior Na-ion and K-ion storage. Nano Res. 15, 4108–4116 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yadav, S. K. et al. 14 Chalcogenide-based2D. Energy Appl. 2D Nanomater (2022).

  • Wang, H. et al. Recent advances in conversion-type electrode materials for post lithium-ion batteries. ACS Mater. Lett. 3(7), 956–977 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Tailored template engineering of MoSe2/N, P-doped carbon nanospheres with sandwiched carbon and few-layered MoSe2 shells for stable and high-rate storage of Na+/K+-ions. J. Mater. Chem. A 9(33), 17780–17789 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y.-S. et al. High-performance cathode materials for potassium-ion batteries: Structural design and electrochemical properties. Adv. Mater. 33(36), 2100409 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, C. et al. Continuous carbon channels enable full Na-ion accessibility for superior room-temperature Na–S batteries. Adv. Mater. 34(8), 2108363 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, T. et al. Rational design of MXene-MoS2 heterostructure with rapid ion transport rate as an advanced anode for sodium-ion batteries. Chem. Eng. J. 457, 141363 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, D. et al. Enhanced high-rate capability and long cycle stability of FeS@ NCG nanofibers for sodium-ion battery anodes. ACS Appl. Mater. Interfaces 14(39), 44303–44316 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, T. et al. Enhancing pseudocapacitive behavior of MOF-derived TiO2-x@ Carbon nanocubes via Mo-doping for high-performance sodium-ion capacitors. Compos. Part B Eng. 253, 110557 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q. et al. Carbon-supported single-atom metal materials for robust Li/Na/K batteries: A mini review. Mater. Today Sustain. 22, 100355 (2023).

    Article 

    Google Scholar
     

  • Yin, H. et al. Recent advances in electrospun metal chalcogenide anodes for lithium-ion and sodium-ion batteries. ACS Appl. Energy Mater. 6(3), 1155–1175 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Askaruly, K. et al. A facile synthesis of graphite-coated amorphous SiO2 from biosources as anode material for libs. Mater. Today Commun. 34, 105136 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, Y. et al. Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives. EcoMat 5(4), e12321 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Han, M. et al. Evaluation of cathode electrodes in lithium-ion battery: Pitfalls and the befitting counter electrode. Small 19, 2208018 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J. et al. Unravelling and quantifying the aging processes of commercial Li (Ni0.5Co0.2Mn0.3)O2/graphite lithium-ion batteries under constant current cycling. J. Mater. Chem. A 11(1), 41–52 (2023).

    Article 

    Google Scholar
     

  • Ren, J. et al. Porous Co 2 VO 4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-micro Lett. 14, 1–14 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Weiss, M. et al. Fast charging of lithium-ion batteries: A review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. J. Mater. Chem. A 9(48), 27140–27169 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Advances in carbon materials for sodium and potassium storage. Adv. Funct. Mater. 32(31), 2203117 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, B. et al. Dual-redox sites guarantee high-capacity sodium storage in two-dimension conjugated metal-organic frameworks. Adv. Funct. Mater. 32(22), 2112072 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, F. et al. Design and synthesis of electrode materials with both battery-type and capacitive charge storage. Energy Storage Mater. 22, 235–255 (2019).

    Article 

    Google Scholar
     

  • Wang, F. et al. Ni0.6Fe0.4Se2/rGO heterogenous nanocubes anode for stable and efficient Na/K-Ion storage. Adv. Mater. Interfaces 9(35), 2201626 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Er, D. et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017).

    Article 

    Google Scholar
     

  • Li, J. et al. Metal selenides find plenty of space in architecting advanced sodium/potassium ion batteries. Small 20, 2305021 (2023).

    Article 

    Google Scholar
     

  • Zhao, X. et al. MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tanwar, S. et al. Structural and electrochemical performance of carbon coated molybdenum selenide nanocomposite for supercapacitor applications. J. Energy Storage 45, 103797 (2022).

    Article 

    Google Scholar
     

  • Zhu, J. et al. Graphene and graphene-based materials for energy storage applications. Small 10(17), 3480–3498 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemine, A. S. et al. Graphene a promising electrode material for supercapacitors—A review. Int. J. Energy Res. 42(14), 4284–4300 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Park, H. et al. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett. 14, 5148–5154 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, L. et al. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 28(22), 4306–4337 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, Y. et al. A conjugated plier-linked nano-spacing graphite network for sodium-ion battery. Energy Storage Mater. 39, 70–80 (2021).

    Article 

    Google Scholar
     

  • Von Lim, Y. et al. Rhenium disulfide nanosheets/carbon composite as novel anodes for high-rate and long lifespan sodium-ion batteries. Nano Energy 61, 626–636 (2019).

    Article 

    Google Scholar
     

  • Liu, X. et al. Design strategy for mxene and metal chalcogenides/oxides hybrids for energy storage and conversion. SSRN Electron. J. https://doi.org/10.2139/ssrn.3993047 (2022).

    Article 

    Google Scholar
     

  • Yousaf, M. et al. A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage. Adv. Energy Mater. 9(30), 1900567 (2019).

    Article 

    Google Scholar
     

  • Ali, M. et al. 2D-TMDs based electrode material for supercapacitor applications. Int. J. Energy Res. 46(15), 22336–22364 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cai, Q. et al. Monolayer-like lattice dynamics in bulk WSe2. Mater. Today Phys. 28, 100856 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, A. et al. Insight on cathodes chemistry for aqueous zinc-ion batteries: From reaction mechanisms, structural engineering, and modification strategies. Small 18(28), 2201011 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Mater. 38, 354–378 (2021).

    Article 

    Google Scholar
     

  • Jiang, D. et al. Flexible electronics based on 2D transition metal dichalcogenides. J. Mater. Chem. A 10, 89–121 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mei, J. et al. 2D/2D heterostructures: Rational design for advanced batteries and electrocatalysis. Energy Environ. Mater. 5, 115–132 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Molecular engineering strategies toward molybdenum diselenide design for energy storage and conversion. Adv. Energy Mater. 12(45), 2202600 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, L. et al. Facile synthesis of ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon for high-performance half/full sodium-ion and potassium-ion batteries. Chem. Eur. J. 25(58), 13411–13421 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques. Small Methods 5(12), 2101130 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wazir, M. B. et al. Review on 2D molybdenum diselenide (MoSe2) and its hybrids for green hydrogen (H2) generation applications. ACS Omega 7(20), 16856–16865 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, S. et al. Design strategies in metal chalcogenides anode materials for high-performance sodium-ion battery. Mater. Today Energy 12, 114–128 (2019).

    Article 

    Google Scholar
     

  • Liu, S. et al. Recent advances and perspectives of battery-type anode materials for potassium ion storage. ACS Nano 15(12), 18931 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, W. et al. Ni3Se4@ MoSe2 composites for hydrogen evolution reaction. Appl. Sci. 9(23), 5035 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Peng, H. et al. 2D heterolayer-structured MoSe2-carbon with fast kinetics for sodium-ion capacitors. Inorg. Chem. 62(4), 1602–1610 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Tahan, M. A. et al. Modulating of MoSe2 functional plane via doping-defect engineering strategy for the development of conductive and electrocatalytic mediators in Li-S batteries. J. Energy Chem. 75, 512–523 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, J. et al. Manipulation of the MoO2/MoSe2 heterointerface boosting high rate and durability for sodium/potassium storage. ACS Appl. Mater. Interfaces 14(32), 36592 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 27(35), 1702317 (2017).

    Article 

    Google Scholar
     

  • Fan, H. et al. 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@ C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater. 10, 48–55 (2018).

    Article 

    Google Scholar
     

  • Chen, S. et al. Boosting sodium storage of Fe1–xS/MoS2 composite via heterointerface engineering. Nano-Micro Lett. 11, 1–14 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Deng, Q. et al. Ultrathin cobalt nickel selenides (Co0.5Ni0.5Se2) nanosheet arrays anchoring on Ti3C2 MXene for high-performance Na+/K+ batteries. J. Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2022.06.073 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tao, J. et al. Rational designing of MoSe2 nanosheets in carbon framework for high-performance potassium-ion batteries. Chem. Eng. J. 448, 137658 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Microstructures constructed by MoSe2/C nanoplates sheathed in N-doped carbon for efficient sodium (potassium) storage. J. Alloys Compds 890, 161746 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kang, W. et al. Organic–inorganic assembly engineering of core–double-shell VSe 16/C@ N-C⊂ MoSe2 nanotubes for boosting Na+/K+ storage performance. J. Mater. Chem. A 10(35), 18185–18194 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Hierarchical interlayer-expanded MoSe2/N–C nanorods for high-rate and long-life sodium and potassium-ion batteries. Inorg. Chem. Front. 8(5), 1271–1278 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Laishram, D. et al. 2D transition metal carbides (MXenes) for applications in electrocatalysis. Heterog. Nanocatalysis Energy Environ Sustain. 1, 165–198 (2022).


    Google Scholar
     

  • Zhang, C. J. et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. https://doi.org/10.1021/acs.chemmater.7b00745 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, G. et al. Three-dimensional Ti3C2Tx and MnS composites as anode materials for high performance alkalis (Li, Na, K) ion batteries. J. Colloid Interface Sci. 633, 468 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. MXenes for metal-ion and metal-sulfur batteries: Synthesis, properties, and electrochemistry. Mater. Rep. Energy 2(1), 100077 (2021).


    Google Scholar
     

  • Hong, S. et al. Ion-selective separation using MXene-based membranes: A review. ACS Mater. Lett. 5(2), 341–356 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Recent advances of two-dimensional (2D) MXenes and phosphorene for high-performance rechargeable batteries. ChemSusChem 3(6), 1047–1070 (2020).

    Article 

    Google Scholar
     

  • Dong, Y. et al. Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30(47), 2000706 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mozafari, M. et al. Ion-selective MXene-based membranes: Current status and prospects. Adv. Mater. Technol. https://doi.org/10.1002/admt.202001189 (2021).

    Article 

    Google Scholar
     

  • Wu, X. et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. https://doi.org/10.1002/adma.201607017 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J. et al. Ti3C2Tx MXene conductive layers supported bio-derived fex- 1Sex/MXene/carbonaceous nanoribbons for high-performance half/full sodium-ion and potassium-ion batteries. Adv. Mater. 33(34), 2101535 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sun, Z. et al. Microbe-assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano https://doi.org/10.1021/acsnano.0c10491 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, E. et al. Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries. Chem. Eng. J. https://doi.org/10.1016/j.cej.2019.123839 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Q. et al. Three-dimensional hierarchical MoSe2/N, F Co-doped carbon heterostructure assembled by ultrathin nanosheets for advanced lithium-ion batteries. ACS Sustain. Chem. Eng. https://doi.org/10.1021/acssuschemeng.0c04719 (2020).

    Article 

    Google Scholar
     

  • Huang, H. et al. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano https://doi.org/10.1021/acsnano.8b09548 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buczek, S. et al. Rational design of titanium carbide MXene electrode architectures for hybrid capacitive deionization. Energy Environ. Mater. 3(3), 398–404 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Luo, J. et al. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019).

    Article 

    Google Scholar
     

  • Sharma, G. et al. Calorimetric study of alkali metal ion (K+, Na+, Li+) exchange in a clay-like MXene. J. Phys. Chem. C. 121(28), 15145 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yin, F. et al. Flexible MoSe2/MXene films for Li/Na-ion hybrid capacitors. J. Power Sources 488, 229452 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X. et al. Porous hollow carbon spheres decorated with molybdenum diselenide nanosheets as anodes for highly reversible lithium and sodium storage. Nanoscale https://doi.org/10.1039/c5nr01909e (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Metal selenides find plenty of space in architecting advanced sodium/potassium ion batteries. Small https://doi.org/10.1002/smll.202305021 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Hierarchical MoSe2 nanosheets/reduced graphene oxide composites as anodes for lithium-ion and sodium-ion batteries with enhanced electrochemical performance. ChemNanoMat https://doi.org/10.1002/cnma.201500097 (2015).

    Article 

    Google Scholar
     

  • Zhong, F. et al. Confining MoSe2 nanosheets into N-doped hollow porous carbon microspheres for fast-charged and long-life potassium-ion storage. ACS Appl. Mater. Interfaces 13(50), 59882 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva, L. A. & Correia, J. C. G. GEMS-Pack: A graphical user interface for the packmol program. J. Chem. Inf. Model. https://doi.org/10.1021/acs.jcim.9b00740 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. https://doi.org/10.1016/j.cpc.2015.07.012 (2015).

    Article 

    Google Scholar
     

  • Humphrey, W. et al. VMD: Visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2009).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Thompson, A. P. & Trott, C. R. A Brief Description of the Kokkos Implementation of the SNAP Potential in ExaMiniMD (Sandia National Lab, 2017).

    Book 

    Google Scholar
     

  • Felipe, J. Thermodynamic behaviour of homonuclear and heteronuclear Lennard-Jones chains with association sites from simulation and theory. Mol. Phys. 92(1), 135–150 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Farhadi, B. et al. Influence of contact electrode and light power on the efficiency of tandem perovskite solar cell: Numerical simulation. Sol. Energy https://doi.org/10.1016/j.solener.2021.08.043 (2021).

    Article 

    Google Scholar
     

  • Galliero, G. et al. Estimation of thermodiffusion in ternary alkane mixtures using molecular dynamics simulations and an irreversible thermodynamic theory. High Temp. High Press. 38, 315–328 (2009).


    Google Scholar
     

  • Asgari, A. et al. Develop molecular dynamics method to simulate the flow and thermal domains of H2O/Cu nanofluid in a nanochannel affected by an external electric field. Int. J. Thermophys. https://doi.org/10.1007/s10765-020-02708-6 (2020).

    Article 

    Google Scholar
     

  • Luty, B. A. & van Gunsteren, W. F. Calculating electrostatic interactions using the particle- particle particle- mesh method with nonperiodic long-range interactions. J. Phys. Chem. 100(7), 2581 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Luo, C. & Sommer, J.-U. Coding coarse grained polymer model for LAMMPS and its application to polymer crystallization. Comput. Phys. Commun. 180(8), 1382–1391 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Plimpton, S. J. & Thompson, A. P. Computational aspects of many-body potentials. MRS Bull. 37(5), 513–552 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Dual mechanism for sodium based energy storage. Small https://doi.org/10.1002/smll.202206922 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Arnittali, M. et al. Structure of biomolecules through molecular dynamics simulations. Procedia Comput. Sci. https://doi.org/10.1016/j.procs.2019.08.181 (2019).

    Article 

    Google Scholar
     

  • Huang, P. et al. Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior Sodium-ion batteries. Chem. Eng. J. https://doi.org/10.1016/j.cej.2021.129161 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, X. et al. Porous Ti3C2TxMXene for ultrahigh-rate sodium-ion storage with long cycle life. ACS Appl. Nano Mater. https://doi.org/10.1021/acsanm.8b00045 (2018).

    Article 

    Google Scholar
     

  • Zhong, W. et al. MXene-derivative pompon-like Na2Ti3O7@ C anode material for advanced sodium ion batteries. Chem. Eng. J. 378, 122209 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sharma, M. et al. Quantum energy storage in 2D heterointerfaces. Adv. Mater. Interfaces 10(11), 2202058 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, C. et al. Preparation of rGO/MXene@ NiCo-P and rGO/MXene@ Fe2O3 positive and negative composite electrodes for high-performance asymmetric supercapacitors. J. Energy Storage 56, 105986 (2022).

    Article 

    Google Scholar
     

  • Tan, Y. et al. Carbon-coated MoSe2/MXene heterostructures as active materials for high-performance Na+ batteries. Mater. Today Commun. https://doi.org/10.1016/j.mtcomm.2022.103740 (2022).

    Article 

    Google Scholar
     

  • Wang, H. et al. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J. Power Sources https://doi.org/10.1016/j.jpowsour.2015.02.096 (2015).

    Article 

    Google Scholar
     

  • Yarovsky, I. Atomistic simulation of interfaces in materials: Theory and applications. Aust. J. Phys. https://doi.org/10.1071/P96118 (1997).

    Article 

    Google Scholar
     

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment