Tipping point in ice-sheet grounding-zone melting due to ocean water intrusion

  • Davis, P. E. et al. Suppressed basal melting in the eastern Thwaites Glacier grounding zone. Nature 614, 479–485 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, B. E. et al. Heterogeneous melting near the Thwaites Glacier grounding line. Nature 614, 471–478 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dutton, A. & Lambeck, K. Ice volume and sea level during the last interglacial. Science 337, 216–219 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dumitru, O. A. et al. Constraints on global mean sea level during Pliocene warmth. Nature 574, 233–236 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Robel, A. A., Wilson, E. & Seroussi, H. Layered seawater intrusion and melt under grounded ice. Cryosphere 16, 451–469 (2022).

    Article 

    Google Scholar
     

  • Cirací, E. et al. Melt rates in the kilometer-size grounding zone of Petermann Glacier, Greenland, before and during a retreat. Proc. Natl Acad. Sci. USA 120, e2220924120 (2023).

    Article 

    Google Scholar
     

  • Aschwanden, A., Bartholomaus, T. C., Brinkerhoff, D. J. & Truffer, M. Brief communication: a roadmap towards credible projections of ice sheet contribution to sea level. Cryosphere 15, 5705–5715 (2021).

    Article 

    Google Scholar
     

  • DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    Article 
    CAS 

    Google Scholar
     

  • DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, E. A., Wells, A. J., Hewitt, I. J. & Cenedese, C. The dynamics of a subglacial salt wedge. J. Fluid Mech. 895, A20 (2020).

    Article 
    CAS 

    Google Scholar
     

  • MacGregor, J. A., Anandakrishnan, S., Catania, G. A. & Winebrenner, D. P. The grounding zone of the Ross Ice Shelf, West Antarctica, from ice-penetrating radar. J. Glaciol. 57, 917–928 (2011).

    Article 

    Google Scholar
     

  • Horgan, H. J. et al. Estuaries beneath ice sheets. Geology 41, 1159–1162 (2013).

    Article 

    Google Scholar
     

  • Milillo, P. et al. Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. Sci. Adv. 5, eaau3433 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Seroussi, H. & Morlighem, M. Representation of basal melting at the grounding line in ice flow models. Cryosphere 12, 3085–3096 (2018).

    Article 

    Google Scholar
     

  • Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Seki, O. et al. Alkenone and boron-based pliocene pCO2 records. Earth Planet. Sci. Lett. 292, 201–211 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Haywood, A. M. et al. The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Clim 16, 2095–2123 (2020).


    Google Scholar
     

  • Scherer, R. P. et al. Pleistocene collapse of the West Antarctic Ice Sheet. Science 281, 82–85 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Hillenbrand, C.-D. et al. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature 547, 43–48 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, D. J. et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561, 383–386 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Golledge, N. R. et al. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma. Clim 13, 959–975 (2017).


    Google Scholar
     

  • Clerc, F., Minchew, B. M. & Behn, M. D. Marine ice cliff instability mitigated by slow removal of ice shelves. Geophys. Res. Lett. 46, 12108–12116 (2019).

    Article 

    Google Scholar
     

  • Bassis, J., Berg, B., Crawford, A. & Benn, D. Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. Science 372, 1342–1344 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Parizek, B. et al. Dynamic (in) stability of Thwaites Glacier, West Antarctica. J. Geophys. Res. Earth Surf. 118, 638–655 (2013).

    Article 

    Google Scholar
     

  • Arthern, R. J. & Williams, C. R. The sensitivity of West Antarctica to the submarine melting feedback. Geophys. Res. Lett. 44, 2352–2359 (2017).

    Article 

    Google Scholar
     

  • Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far reach of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).

    Article 

    Google Scholar
     

  • Graham, A. G. et al. Rapid retreat of Thwaites Glacier in the pre-satellite era. Nat. Geosci. 15, 706–713 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Anandakrishnan, S., Catania, G. A., Alley, R. B. & Horgan, H. J. Discovery of till deposition at the grounding line of Whillans Ice Stream. Science 315, 1835–1838 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Dow, C. F., Ross, N., Jeofry, H., Siu, K. & Siegert, M. J. Antarctic basal environment shaped by high-pressure flow through a subglacial river system. Nat. Geosci. 15, 892–898 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Whiteford, A., Horgan, H., Leong, W. & Forbes, M. Melting and refreezing in an ice shelf basal channel at the grounding line of the Kamb Ice Stream, West Antarctica. J. Geophys. Res. Earth Surf. 127, e2021JF006532 (2022).

    Article 

    Google Scholar
     

  • Jenkins, A. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41, 2279–2294 (2011).

    Article 

    Google Scholar
     

  • Hewitt, I. Seasonal changes in ice sheet motion due to melt water lubrication. Earth Planet. Sci. Lett. 371, 16–25 (2013).

    Article 

    Google Scholar
     

  • Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).

    Article 

    Google Scholar
     

  • Robel, A. A., Seroussi, H. & Roe, G. H. Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise. Proc. Natl Acad. Sci. USA 116, 14887–14892 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

    Article 

    Google Scholar
     

  • Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).

    Article 

    Google Scholar
     

  • Katz, R. F. & Worster, M. G. Stability of ice-sheet grounding lines. Philos. Trans. R. Soc. A 466, 1597–1620 (2010).


    Google Scholar
     

  • Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic Ice Sheet. Nat. Geosci. 13, 132–137 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).

    Article 

    Google Scholar
     

  • Schoof, C. Marine ice sheet stability. J. Fluid Mech. 698, 62–72 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018).

    Article 

    Google Scholar
     

  • Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

    Article 

    Google Scholar
     

  • Pritchard, H. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lhermitte, S. et al. Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Proc. Natl Acad. Sci. USA 117, 24735–24741 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bradley, A. T., Bett, D., Dutrieux, P., De Rydt, J. & Holland, P. R. The influence of Pine Island Ice Shelf calving on basal melting. J. Geophys. Res. Oceans 127, e2022JC018621 (2022).

    Article 

    Google Scholar
     

  • Bradley, A. T., De Rydt, J., Bett, D. T., Dutrieux, P. & Holland, P. R. The ice dynamic and melting response of Pine Island Ice Shelf to calving. Ann. Glaciol. 63, 111–115 (2022).

    Article 

    Google Scholar
     

  • Schroeder, D. M., Blankenship, D. D. & Young, D. A. Evidence for a water system transition beneath Thwaites Glacier, West Antarctica. Proc. Natl Acad. Sci. USA 110, 12225–12228 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Brunt, K. M., Fricker, H. A. & Padman, L. Analysis of ice plains of the Filchner–Ronne Ice Shelf, Antarctica, using ICESat laser altimetry. J. Glaciol. 57, 965–975 (2011).

    Article 

    Google Scholar
     

  • Begeman, C. B. et al. Ocean stratification and low melt rates at the ross ice shelf grounding zone. J. Geophys. Res. Oceans 123, 7438–7452 (2018).

    Article 

    Google Scholar
     

  • Milillo, P. et al. On the short-term grounding zone dynamics of Pine Island Glacier, West Antarctica, observed with cosmo-skymed interferometric data. Geophys. Res. Lett. 44, 10–436 (2017).

    Article 

    Google Scholar
     

  • Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14, 3033–3070 (2020).

    Article 

    Google Scholar
     

  • McPhee, M. G. Turbulent heat flux in the upper ocean under sea ice. J. Geophys. Res. Oceans 97, 5365–5379 (1992).

    Article 

    Google Scholar
     

  • Bradley, A. T., Rosie Williams, C., Jenkins, A. & Arthern, R. Asymptotic analysis of subglacial plumes in stratified environments. Proc. R. Soc. London 478, 20210846 (2022).


    Google Scholar
     

  • Jenkins, A., Nicholls, K. W. & Corr, H. F. Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr. 40, 2298–2312 (2010).

    Article 

    Google Scholar
     

  • Holland, D. M. & Jenkins, A. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29, 1787–1800 (1999).

    Article 

    Google Scholar
     

  • Lazeroms, W. M., Jenkins, A., Rienstra, S. W. & Van De Wal, R. S. An analytical derivation of ice-shelf basal melt based on the dynamics of meltwater plumes. J. Phys. Oceanogr. 49, 917–939 (2019).

    Article 

    Google Scholar
     

  • Hewitt, I. J. Subglacial plumes. Annu. Rev. Fluid Mech. 52, 145–169 (2020).

    Article 

    Google Scholar
     

  • Kimura, S., Nicholls, K. W. & Venables, E. Estimation of ice shelf melt rate in the presence of a thermohaline staircase. J. Phys. Oceanogr. 45, 133–148 (2015).

    Article 

    Google Scholar
     

  • Patankar, S. V. Numerical Heat Transfer and Fluid Flow (CRC Press, 1980).

  • Lu, P., Li, Z., Cheng, B. & Leppäranta, M. A parameterization of the ice–ocean drag coefficient. J. Geophys. Res. Oceans 116, C07019 (2011).

    Article 

    Google Scholar
     

  • Ezhova, E., Cenedese, C. & Brandt, L. Dynamics of three-dimensional turbulent wall plumes and implications for estimates of submarine glacier melting. J. Phys. Oceanogr. 48, 1941–1950 (2018).

    Article 

    Google Scholar
     

  • Joughin, I. et al. Basal conditions for Pine Island and Thwaites glaciers, West Antarctica, determined using satellite and airborne data. J. Glaciol. 55, 245–257 (2009).

    Article 

    Google Scholar
     

  • Pattyn, F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth Planet. Sci. Lett. 295, 451–461 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Hewitt, I. J. Modelling distributed and channelized subglacial drainage: the spacing of channels. J. Glaciol. 57, 302–314 (2011).

    Article 

    Google Scholar
     

  • Carter, S. & Fricker, H. The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Ann. Glaciol. 53, 267–280 (2012).

    Article 

    Google Scholar
     

  • Bradley, A.T. & Hewitt, I.J. ‘Tipping-point in ice-sheet grounding-zone melting due to ocean water intrusion’ by Bradley and Hewitt. Zenodo https://doi.org/10.5281/zenodo.10895498 (2024).

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment