Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis

  • Soltis, D. E. et al. Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336–348 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Amborella Genome Project et al. The Amborella genome and the evolution of flowering plants. Science 342, 1241089 (2013).

  • Chanderbali, A. S. et al. Buxus and Tetracentron genomes help resolve eudicot genome history. Nat. Commun. 13, 643 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edger, P. P. et al. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 29, 2150–2167 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Patterns and processes of diploidization in land plants. Annu. Rev. Plant Biol. 72, 387–410 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, F. et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 4, 258–268 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cross, A. T., Krueger, T. A., Gonella, P. M., Robinson, A. S. & Fleischmann, A. S. Conservation of carnivorous plants in the age of extinction. Glob. Ecol. Conserv. 24, e01272 (2020).


    Google Scholar
     

  • Ellison, A. M. & Adamec, L. R. (eds) Carnivorous Plants: Physiology, Ecology, and Evolution (Oxford Univ. Press, 2018).

  • Renner, S. S. & Ricklefs, R. E. Dioecy and its correlates in the flowering plants. Am. J. Bot. 82, 596–606 (1995).

    Article 

    Google Scholar
     

  • Walker, J. F. et al. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. Am. J. Bot. 104, 858–867 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytol. 217, 855–870 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palfalvi, G. et al. Genomes of the Venus flytrap and close relatives unveil the roots of plant carnivory. Curr. Biol. 30, 2312–2320.e5 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heubl, G. & Wistuba, A. A cytological study of the genus Nepenthes L. (Nepenthaceae). Sendtnera 4, 169–174 (1997).


    Google Scholar
     

  • Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153 (2018).

    Article 

    Google Scholar
     

  • Albert, V. A., Williams, S. E. & Chase, M. W. Carnivorous plants: phylogeny and structural evolution. Science 257, 1491–1495 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heubl, G., Bringmann, G. & Meimberg, H. Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales—revisited. Plant Biol. 8, 821–830 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freund, M. et al. The digestive systems of carnivorous plants. Plant Physiol. 190, 44–59 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrett, S. C. H., Yakimowski, S. B., Field, D. L. & Pickup, M. Ecological genetics of sex ratios in plant populations. Philos. Trans. R. Soc. B 365, 2549–2557 (2010).

    Article 

    Google Scholar
     

  • Scharmann, M., Grafe, T. U., Metali, F. & Widmer, A. Sex is determined by XY chromosomes across the radiation of dioecious Nepenthes pitcher plants. Evol. Lett. 3, 586–597 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scharmann, M., Wistuba, A. & Widmer, A. Introgression is widespread in the radiation of carnivorous Nepenthes pitcher plants. Mol. Phylogenet. Evol. 163, 107214 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Joyce, B. L. et al. FractBias: a graphical tool for assessing fractionation bias following polyploidy. Bioinformatics 33, 552–554 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Z., Zheng, C., Albert, V. A. & Sankoff, D. Excision dominates pseudogenization during fractionation after whole genome duplication and in gene loss after speciation in plants. Front. Genet. 11, 603056 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alger, E. I. & Edger, P. P. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 54, 108–113 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, K.-H. et al. SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. New Phytol. 235, 801–809 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. New Phytol. 209, 1252–1263 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashman, T.-L. et al. Tree of sex: a database of sexual systems. Sci. Data 1, 140015 (2014).

    Article 

    Google Scholar
     

  • Harkess, A. et al. Sex determination by two Y-linked genes in garden asparagus. Plant Cell 32, 1790–1796 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Integration of genetic and physical maps of the Primula vulgaris S locus and localization by chromosome in situ hybridization. New Phytol. 208, 137–148 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rifkin, J. L. et al. Widespread recombination suppression facilitates plant sex chromosome evolution. Mol. Biol. Evol. 38, 1018–1030 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Potente, G. et al. Comparative genomics elucidates the origin of a supergene controlling floral heteromorphism. Mol. Biol. Evol. 39, msac035 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akagi, T. et al. Recurrent neo-sex chromosome evolution in kiwifruit. Nat. Plants 9, 393–402 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horiuchi, A. et al. Ongoing rapid evolution of a post-Y region revealed by chromosome-scale genome assembly of a hexaploid monoecious persimmon (Diospyros kaki). Mol. Biol. Evol. 40, msad151 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue, J. et al. The origin and evolution of sex chromosomes, revealed by sequencing of the Silene latifolia female genome. Curr. Biol. 33, 2504–2514.e3 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Westergaard, M. The mechanism of sex determination in dioecious flowering plants. in Advances in Genetics Vol. 9 (ed. Demerec, M.) 217–281 (Academic, 1958).

  • Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975–997 (1978).

    Article 

    Google Scholar
     

  • Zhang, W. et al. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133, 3085–3095 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, J. et al. Defective in Tapetal Development and Function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J. 55, 266–277 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murase, K. et al. MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells 22, 115–123 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X., Makaroff, C. A. & Ma, H. The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell 15, 1281–1295 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanyam, K. & Narayana, L. L. A contribution to the floral anatomy of Nepenthes khasiana Hook F. Proc. Indian Acad. Sci. 73, 124–131 (1971).

    Article 

    Google Scholar
     

  • Moyroud, E., Kusters, E., Monniaux, M., Koes, R. & Parcy, F. LEAFY blossoms. Trends Plant Sci. 15, 346–352 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moyroud, E., Tichtinsky, G. & Parcy, F. The LEAFY floral regulators in angiosperms: conserved proteins with diverse roles. J. Plant Biol. 52, 177–185 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 50, D165–D173 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl Acad. Sci. USA 112, E5123–E5132 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Honma, T. & Goto, K. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127, 2021–2030 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Theißen, G., Melzer, R. & Rümpler, F. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143, 3259–3271 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Sather, D. N., Jovanovic, M. & Golenberg, E. M. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism. BMC Plant Biol. 10, 46 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsukaya, H. Comparative leaf development in angiosperms. Curr. Opin. Plant Biol. 17, 103–109 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Renner, T. & Specht, C. D. A sticky situation: assessing adaptations for plant carnivory in the Caryophyllales by means of stochastic character mapping. Int. J. Plant Sci. 172, 889–901 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bemm, F. et al. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res. 26, 1–14 (2016).

    Article 

    Google Scholar
     

  • Iosip, A. L. et al. The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling. PLoS Biol. 18, e3000964 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Procko, C. et al. Stretch-activated ion channels identified in the touch-sensitive structures of carnivorous Droseraceae plants. eLife 10, e64250 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D. & Penin, A. A. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 88, 1058–1070 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, 2010–2011 (2010).

    Article 

    Google Scholar
     

  • Pavlovič, A., Masarovičová, E. & Hudák, J. Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes. Ann. Bot. 100, 527–536 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavlovič, A. Photosynthetic characterization of Australian pitcher plant Cephalotus follicularis. Photosynthetica 49, 253–258 (2011).

    Article 

    Google Scholar
     

  • Yilamujiang, A., Reichelt, M. & Mithöfer, A. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants. Ann. Bot. 118, 369–375 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erb, M., Meldau, S. & Howe, G. A. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17, 250–259 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavlovič, A. & Mithöfer, A. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. J. Exp. Bot. 70, 3379–3389 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Capó-Bauçà, S., Font-Carrascosa, M., Ribas-Carbó, M., Pavlovič, A. & Galmés, J. Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant Nepenthes × ventrata. Ann. Bot. 126, 25–37 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand, D. & Hoberman, R. Diagnosing duplications—can it be done? Trends Genet. 22, 156–164 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. A benchmark of gene expression tissue-specificity metrics. Brief. Bioinform. 44, bbw008 (2016).

    Article 

    Google Scholar
     

  • Callard, D., Axelos, M. & Mazzolini, L. Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol. 112, 705–715 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K., Zawadzka, A., Czarnocki, Z., Reiter, R. J. & Back, K. Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). J. Pineal Res. 61, 470–478 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, G.-H. & Back, K. Cyclic 3-hydroxymelatonin exhibits diurnal rhythm and cyclic 3-hydroxymelatonin overproduction increases secondary tillers in rice by upregulating MOC1 expression. Melatonin Res. 2, 120–138 (2019).

    Article 

    Google Scholar
     

  • Lee, H. Y. & Back, K. The antioxidant cyclic 3-hydroxymelatonin promotes the growth and flowering of Arabidopsis thaliana. Antioxidants 11, 1157 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chia, T. F., Aung, H. H., Osipov, A. N., Goh, N. K. & Chia, L. S. Carnivorous pitcher plant uses free radicals in the digestion of prey. Redox Rep. 9, 255–261 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Hatano, N. & Hamada, T. Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata. J. Proteomics 75, 4844–4852 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukushima, K. et al. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol. 1, 0059 (2017).

    Article 

    Google Scholar
     

  • Wal, A., Staszek, P., Pakula, B., Paradowska, M. & Krasuska, U. ROS and RNS alterations in the digestive fluid of Nepenthes × ventrata trap at different developmental stages. Plants 11, 3304 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freeling, M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60, 433–453 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. Nat. Rev. Genet. 9, 938–950 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hedrich, R. & Fukushima, K. On the origin of carnivory: molecular physiology and evolution of plants on an animal diet. Annu. Rev. Plant Biol. 72, 133–153 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pannell, J. R. & Jordan, C. Y. Evolutionary transitions between hermaphroditism and dioecy in animals and plants. Annu. Rev. Ecol. Evol. Syst. 53, 183–201 (2022).

    Article 

    Google Scholar
     

  • Cronk, Q. & Müller, N. A. Default sex and single gene sex determination in dioecious plants. Front. Plant Sci. 11, 1162 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renner, S. S. & Müller, N. A. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. Nat. Plants 7, 392–402 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Albert, V. A., Oppenheimer, D. G. & Lindqvist, C. Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci. 7, 297–301 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bringmann, G., Rischer, H., Schlauer, J. & Aké Assi, L. In vitro propagation of Ancistrocladus abbreviatus Airy Shaw (Ancistrocladaceae). Plant Cell Tissue Organ Cult. 57, 71–73 (1999).

    Article 

    Google Scholar
     

  • Fukushima, K., Narukawa, H., Palfalvi, G. & Hasebe, M. A discordance of seasonally covarying cues uncovers misregulated phenotypes in the heterophyllous pitcher plant Cephalotus follicularis. Proc. R. Soc. B 288, 20202568 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bringmann, G., Rübenacker, M., Jansen, J. R., Scheutzow, D. & Aké Assi, L. On the structure of the Dioncophyllaceae alkaloids dioncophylline A (‘triphyophylline’) and ‘O-methyl-triphyophylline’. Tetrahedron Lett. 31, 639–642 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Bringmann, G. & Rischer, H. In vitro propagation of the alkaloid-producing rare African liana, Triphyophyllum peltatum (Dioncophyllaceae). Plant Cell Rep. 20, 591–595 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Michael, T. P. et al. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat. Commun. 9, 541 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haug-Baltzell, A., Stephens, S. A., Davey, S., Scheidegger, C. E. & Lyons, E. SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics 33, 2197–2198 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc. 15, 3745–3776 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Neumann, P., Novák, P., Hoštáková, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 10, 1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics 37, 422–423 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom. Bioinform. 2, lqaa026 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S. O. & Grau, J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinform. 19, 189 (2018).

    Article 

    Google Scholar
     

  • Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article 

    Google Scholar
     

  • El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Li, Y., Chen, Q., Sun, Y. & Lu, Z. WGDdetector: a pipeline for detecting whole genome duplication events using the genome or transcriptome annotations. BMC Bioinform. 20, 75 (2019).

    Article 

    Google Scholar
     

  • Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, G.-Q. et al. The Apostasia genome and the evolution of orchids. Nature 549, 379–383 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suetsugu, K. et al. Transcriptomic heterochrony and completely cleistogamous flower development in the mycoheterotrophic orchid Gastrodia. New Phytol. 237, 323–338 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukushima, K. & Pollock, D. D. Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution. Nat. Commun. 11, 4459 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huerta-Cepas, J. et al. The human phylome. Genome Biol. 8, 934–941 (2007).

    Article 

    Google Scholar
     

  • Guéguen, L. & Duret, L. Unbiased estimate of synonymous and nonsynonymous substitution rates with nonstationary base composition. Mol. Biol. Evol. 35, 734–742 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Fukushima, K. & Pollock, D. D. Detecting macroevolutionary genotype–phenotype associations using error-corrected rates of protein convergence. Nat. Ecol. Evol. 7, 155–170 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vollger, M. R., Kerpedjiev, P., Phillippy, A. M. & Eichler, E. E. StainedGlass: interactive visualization of massive tandem repeat structures with identity heatmaps. Bioinformatics 38, 2049–2051 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment