Stable isotopes show Homo sapiens dispersed into cold steppes ~45,000 years ago at Ilsenhöhle in Ranis, Germany

  • Hublin, J.-J. et al. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299–302 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajdinjak, M. et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature 592, 253–257 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prüfer, K. et al. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol. 5, 820–825 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jöris, O., Neruda, P., Wiśniewski, A. & Weiss, M. The Late and Final Middle Palaeolithic of Central Europe and its contributions to the formation of the regional Upper Palaeolithic: a review and a synthesis. J. Paleolit. Archaeol. 5, 5–17 (2022).

    Article 

    Google Scholar
     

  • Slimak, L. et al. Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Sci. Adv. 8, eabj9496 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, M. Did Neanderthals and modern humans take turns living in a French cave? Science 375, 598–599 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011).

    Article 

    Google Scholar
     

  • Staubwasser, M. et al. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proc. Natl Acad. Sci. USA 115, 9116–9121 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pederzani, S. et al. Subarctic climate for the earliest Homo sapiens in Europe. Sci. Adv. 7, eabi4642 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigst, P. R. et al. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl Acad. Sci. USA 111, 14394–14399 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desbrosse, R. & Kozlowski, J. Hommes et Climats à l’âge du Mammouth: Le Paléolithique Supérieur d’Eurasie Centrale (FeniXX, 1988).

  • Flas, D. La transition du Paléolithique moyen au supérieur dans la plaine septentrionale de l’Europe. Anthropol. Praehist. 119, 7–14 (2008).


    Google Scholar
     

  • Mylopotamitaki, D. et al. Homo sapiens reached the higher latitudes of Europe by 45,000 years ago. Nature (in the press).

  • Hülle, W. Die Ilsenhöhle unter Burg Ranis in Thüringen (G. Fischer, 1977).

  • Smith, G. M. et al. The ecology, subsistence and diet of 45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany. Nat. Ecol. Evol. (in the press).

  • Stephan, E. Fossil isotope record of climate: δ18O values in Pleistocene equid bone and tooth phosphate. In Proc. 32nd International Symposium on Archaeometry 1–11 (Universidad Nacional Autónoma de Mexico, Instituto de Investigaciones Antropológicas, 2000).

  • Pushkina, D., Bocherens, H. & Ziegler, R. Unexpected palaeoecological features of the Middle and Late Pleistocene large herbivores in southwestern Germany revealed by stable isotopic abundances in tooth enamel. Quat. Int. 339-340, 164–178 (2014).

    Article 

    Google Scholar
     

  • Pushkina, D., Juha, S., Reinhard, Z. & Hervé, B. Stable isotopic and mesowear reconstructions of paleodiet and habitat of the Middle and Late Pleistocene mammals in south-western Germany. Quat. Sci. Rev. 227, 106026 (2020).

    Article 

    Google Scholar
     

  • Scherler, L., Tütken, T. & Becker, D. Carbon and oxygen stable isotope compositions of Late Pleistocene mammal teeth from dolines of Ajoie (Northwestern Switzerland). Quat. Res. 82, 378–387 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Arppe, L. M. & Karhu, J. A. Oxygen isotope values of precipitation and the thermal climate in Europe during the middle to late Weichselian ice age. Quat. Sci. Rev. 29, 1263–1275 (2010).

    Article 

    Google Scholar
     

  • Kovács, J., Moravcová, M., Újvári, G. & Pintér, A. G. Reconstructing the paleoenvironment of East Central Europe in the Late Pleistocene using the oxygen and carbon isotopic signal of tooth in large mammal remains. Quat. Int. 276-277, 145–154 (2012).

    Article 

    Google Scholar
     

  • Global Network of Isotopes in Precipitation. The GNIP Database (IAEA/WMO; 2020); http://www.iaea.org/water

  • Callaghan, T. V., Werkman, B. R. & Crawford, R. M. The tundra-taiga interface and its dynamics: concepts and applications. Ambio 12, 6–14 (2002).

  • Kjellström, E. et al. Simulated climate conditions in Europe during the Marine Isotope Stage 3 stadial. Boreas 39, 436–456 (2010).

    Article 

    Google Scholar
     

  • Prud’homme, C. et al. Palaeotemperature reconstruction during the Last Glacial from δ18O of earthworm calcite granules from Nussloch loess sequence, Germany. Earth Planet. Sci. Lett. 442, 13–20 (2016).

    Article 

    Google Scholar
     

  • Van Meerbeeck, C. J. et al. The nature of MIS 3 stadial–interstadial transitions in Europe: New insights from model–data comparisons. Quat. Sci. Rev. 30, 3618–3637 (2011).

    Article 

    Google Scholar
     

  • Prud’homme, C. et al. Millennial-timescale quantitative estimates of climate dynamics in central Europe from earthworm calcite granules in loess deposits. Commun. Earth Environ. 3, 267 (2022).

  • Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O. & Svensson, A. Millennial-scale variability during the last glacial: the ice core record. Quat. Sci. Rev. 29, 2828–2838 (2010).

    Article 

    Google Scholar
     

  • Kern, O. A. et al. A near-continuous record of climate and ecosystem variability in Central Europe during the past 130 kyrs (Marine Isotope Stages 5–1) from Füramoos, southern Germany. Quat. Sci. Rev. 284, 107505 (2022).

    Article 

    Google Scholar
     

  • Sirocko, F. et al. The ELSA-vegetation-stack: reconstruction of landscape evolution zones (LEZ) from laminated Eifel maar sediments of the last 60,000 years. Glob. Planet. Change 142, 108–135 (2016).

    Article 

    Google Scholar
     

  • Schwartz-Narbonne, R. et al. Reframing the mammoth steppe: Insights from analysis of isotopic niches. Quat. Sci. Rev. 215, 1–21 (2019).

    Article 

    Google Scholar
     

  • Stevens, R. E. & Hedges, R. E. M. Carbon and nitrogen stable isotope analysis of northwest European horse bone and tooth collagen, 40,000 BP-present: palaeoclimatic interpretations. Quat. Sci. Rev. 23, 977–991 (2004).

    Article 

    Google Scholar
     

  • Reade, H. et al. Nitrogen palaeo-isoscapes: changing spatial gradients of faunal δ15N in late Pleistocene and early Holocene Europe. PLoS ONE 18, e0268607 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez Goñi, M. F. Updating Neanderthals: Understanding Behavioural Complexity in the Late Middle Palaeolithic (eds Romagnoli, F. et al.) 17–38 (Academic, 2022).

  • Bocherens, H. Isotopic biogeochemistry and the palaeoecology of the mammoth steppe fauna. Deinsea 9, 57–76 (2003).


    Google Scholar
     

  • Bourgon, N. et al. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. Proc. Natl Acad. Sci. USA 117, 4675–4681 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaouen, K., Beasley, M., Schoeninger, M., Hublin, J.-J. & Richards, M. P. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya). Sci. Rep. 6, 26281 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaouen, K. et al. A Neandertal dietary conundrum: insights provided by tooth enamel Zn isotopes from Gabasa, Spain. Proc. Natl Acad. Sci. USA 119, e2109315119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viers, J. et al. Evidence of Zn isotopic fractionation in a soil–plant system of a pristine tropical watershed (Nsimi, Cameroon). Chem. Geol. 239, 124–137 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Opfergelt, S. et al. The influence of weathering and soil organic matter on Zn isotopes in soils. Chem. Geol. 466, 140–148 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cooper, L. P. et al. An Early Upper Palaeolithic open-air station and mid-Devensian hyaena den at Grange Farm, Glaston, Rutland, UK. Proc. Prehist. Soc. 78, 73–93 (2012).

    Article 

    Google Scholar
     

  • Berto, C. et al. Environment changes during Middle to Upper Palaeolithic transition in southern Poland (Central Europe). A multiproxy approach for the MIS 3 sequence of Koziarnia Cave (Kraków-Częstochowa Upland). J. Archaeol. Sci. Rep. 35, 102723 (2021).


    Google Scholar
     

  • Uthmeier, T., Hetzel, E. & Heißig, K. Neandertaler im spätesten Mittelpaläolithikum Bayerns? Die Jerzmanovice-Spitzen aus der Kirchberghöhle bei Schmähingen im Nördlinger Ries. Ber. der Bayerischen Bodendenkmalpfl. 59, 19–27 (2018).


    Google Scholar
     

  • Demidenko, Y. E. & Škrdla, P. Lincombian–Ranisian–Jerzmanowician Industry and South Moravian Sites: a Homo sapiens Late Initial Upper Paleolithic with Bohunician industrial generic roots in Europe. J. Paleolit. Archaeol. 6, 17 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, W. The Danube corridor hypothesis and the Carpathian Basin: geological, environmental and archaeological approaches to characterizing Aurignacian dynamics. J. World Prehist. 31, 117–178 (2018).

    Article 

    Google Scholar
     

  • Obreht, I. et al. Shift of large-scale atmospheric systems over europe during late MIS 3 and implications for modern human dispersal. Sci. Rep. 7, 5848 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dettman, D. L. et al. Seasonal stable isotope evidence for a strong Asian monsoon. Geology 29, 31–34 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Tütken, T., Vennemann, T. W., Janz, H. & Heizmann, E. P. J. Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: a reconstruction from C, O and Sr isotopes of fossil remains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 457–491 (2006).

    Article 

    Google Scholar
     

  • Pederzani, S., Snoeck, C., Wacker, U. & Britton, K. Anion exchange resin and slow precipitation preclude the need for pretreatments in silver phosphate preparation for oxygen isotope analysis of bioapatites. Chem. Geol. 534, 119455 (2020).

    Article 

    Google Scholar
     

  • Passey, B. H. et al. Inverse methods for estimating primary input signals from time-averaged isotope profiles. Geochim. Cosmochim. Acta 69, 4101–4116 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Pryor, A. J. E., Stevens, R. E., O’Connell, T. C. & Lister, J. R. Quantification and propagation of errors when converting vertebrate biomineral oxygen isotope data to temperature for palaeoclimate reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 99–107 (2014).

    Article 

    Google Scholar
     

  • Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 5342 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talamo, S., Fewlass, H., Maria, R. & Jaouen, K. ‘Here we go again’: the inspection of collagen extraction protocols for 14C dating and palaeodietary analysis. Sci. Technol. Archaeol. Res. 7, 62–77 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).

    Article 

    Google Scholar
     

  • Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337e360 (2009).

    Article 

    Google Scholar
     

  • Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moynier, F., Albarède, F. & Herzog, G. F. Isotopic composition of zinc, copper and iron in lunar samples. Geochim. Cosmochim. Acta 70, 6103–6117 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Copeland, S. R. et al. Strontium isotope ratios (87Sr/6Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. Rapid Commun. Mass Spectrom. 22, 3187–3194 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marchi, M. et al. ClimateEU, scale-free climate normals, historical time series and future projections for Europe. Sci. Data 7, 428 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50 Year Means of Oxygen Isotope Data from Ice Core (NGRIP, 2007).https://doi.org/10.1594/PANGAEA.586886

  • Kern, O. A. Percentages of Pollen Data from Late MIS 6 to MIS 1 from Füramoos, Southern Germany (PANGAEA, 2021).https://doi.org/10.1594/PANGAEA.934305

  • European Digital Elevation Model (EU-DEM), version 1.1 (European Environment Agency, 2016).

  • Planet. Planet OSM https://planet.osm.org/planet (OpenStreetMap Contributors, 2023).

  • Bowen, G. J. & Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. https://doi.org/10.1029/2003WR002086 (2003).

  • Treskatis, C. & Hartsch, K. in Tracer Hydrology 97 (ed. Kranjc, A.) 353–359 (CRC, 1997).

  • Lutz, S. R. et al. Spatial patterns of water age: using young water fractions to improve the characterization of transit times in contrasting catchments. Water Resour. Res. 54, 4767–4784 (2018).

    Article 

    Google Scholar
     

  • Böhnke, R., Geyer, S. & Kowski, P. Using environmental isotopes 2H and 18O for identification of infiltration processes in floodplain ecosystems of the River Elbe. Isot. Environ. Health Stud. 38, 1–13 (2002).

    Article 

    Google Scholar
     

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment