Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).
Heiss, M. et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 12, 439–444 (2013).
Sun, Z. et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014).
Klimchitskaya, G., Mohideen, U. & Mostepanenko, V. The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827 (2009).
Albrechtsen, M. et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun. 13, 6281 (2022).
Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).
Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).
Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008).
Munkhbat, B., Canales, A., Küçüköz, B., Baranov, D. G. & Shegai, T. O. Tunable self-assembled Casimir microcavities and polaritons. Nature 597, 214–219 (2021).
Mastrangeli, M. et al. Self-assembly from milli- to nanoscales: methods and applications. J. Micromech. Microeng. 19, 083001 (2009).
Kim, I., Mun, J., Hwang, W., Yang, Y. & Rho, J. Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures. Microsyst. Nanoeng. 6, 65 (2020).
Chang, W. et al. Concurrent self-assembly of RGB microLEDs for next-generation displays. Nature 617, 287–291 (2023).
Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).
Zhang, K. et al. A Gd@C82 single-molecule electret. Nat. Nanotechnol. 15, 1019–1024 (2020).
Hah, J. H. et al. Converging lithography by combination of electrostatic layer-by-layer self-assembly and 193 nm photolithography: Top-down meets bottom-up. J. Vac. Sci. Technol. B 24, 2209–2213 (2006).
George, D. & Madou, M. J. in Mechanical Sciences: The Way Forward (eds Dixit, U. S. & Dwivedy, S. K.) 197–239 (Springer, 2021).
Luo, S. et al. High-throughput fabrication of triangular nanogap arrays for surface-enhanced Raman spectroscopy. ACS Nano 16, 7438–7447 (2022).
Ouk Kim, S. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003).
Liu, F. et al. Sculpting extreme electromagnetic field enhancement in free space for molecule sensing. Small 14, 1801146 (2018).
Palstra, I. M., Doeleman, H. M. & Koenderink, A. F. Hybrid cavity-antenna systems for quantum optics outside the cryostat? Nanophotonics 8, 1513–1531 (2019).
Gondarenko, A. et al. Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures. Phys. Rev. Lett. 96, 143904 (2006).
Albrechtsen, M., Vosoughi Lahijani, B. & Stobbe, S. Two regimes of confinement in photonic nanocavities: bulk confinement versus lightning rods. Opt. Express 30, 15458–15469 (2022).
Hu, S. & Weiss, S. M. Design of photonic crystal cavities for extreme light concentration. ACS Photonics 3, 1647–1653 (2016).
Mork, J. & Yvind, K. Squeezing of intensity noise in nanolasers and nanoLEDs with extreme dielectric confinement. Optica 7, 1641–1644 (2020).
Choi, H., Heuck, M. & Englund, D. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys. Rev. Lett. 118, 223605 (2017).
Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010).
Bozkurt, A., Joshi, C. & Mirhosseini, M. Deep sub-wavelength localization of light and sound in dielectric resonators. Opt. Express 30, 12378–12386 (2022).
Hollenbach, M. et al. Wafer-scale nanofabrication of telecom single-photon emitters in silicon. Nat. Commun. 13, 7683 (2022).
Panuski, C. L. et al. A full degree-of-freedom spatiotemporal light modulator. Nat. Photonics 16, 834–842 (2022).
Bishop, K. J., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).
Buks, E. & Roukes, M. Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys. Rev. B 63, 033402 (2001).
Rodriguez, A. W., Capasso, F. & Johnson, S. G. The Casimir effect in microstructured geometries. Nat. Photonics. 5, 211–221 (2011).
Burger, F. A., Corkery, R. W., Buhmann, S. Y. & Fiedler, J. Comparison of theory and experiments on van der waals forces in media—a survey. J. Phys. Chem. C 124, 24179–24186 (2020).
Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).
Palasantzas, G. & Svetovoy, V. B. Problems in measuring the Casimir forces at short separations. Int. J. Mod. Phys. A 37, 2241001 (2022).
Behunin, R., Intravaia, F., Dalvit, D., Neto, P. M. & Reynaud, S. Modeling electrostatic patch effects in Casimir force measurements. Phys. Rev. A 85, 012504 (2012).
Gies, H. & Klingmüller, K. Casimir edge effects. Phys. Rev. Lett. 97, 220405 (2006).
Vosoughi Lahijani, B. et al. Electronic-photonic circuit crossings. Preprint at https://doi.org/10.48550/arXiv.2204.14257 (2022).
Chao, P., Strekha, B., Kuate Defo, R., Molesky, S. & Rodriguez, A. W. Physical limits in electromagnetism. Nat. Rev. Phys. 4, 543–559 (2022).
Bharadwaj, S., Van Mechelen, T. & Jacob, Z. Picophotonics: anomalous atomistic waves in silicon. Phys. Rev. Appl. 18, 044065 (2022).
He, Q. & Tang, L. Sub-5 nm nanogap electrodes towards single-molecular biosensing. Biosens. Bioelectron. 213, 114486 (2022).
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).
Ronn, J. et al. Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement. ACS Photonics 3, 2040–2048 (2016).
Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).
Delaney, R. et al. Superconducting-qubit readout via low-backaction electro-optic transduction. Nature 606, 489–493 (2022).
Arregui, G. et al. Cavity optomechanics with Anderson-localized optical modes. Phys. Rev. Lett. 130, 043802 (2023).
Rosiek, C. A. et al. Observation of strong backscattering in valley-Hall photonic topological interface modes. Nat. Photon. 17, 386–392 (2023).
Tsoukalas, K., Vosoughi Lahijani, B. & Stobbe, S. Impact of transduction scaling laws on nanoelectromechanical systems. Phys. Rev. Lett. 124, 223902 (2020).
Babar, A. N. et al. Self-assembled photonic cavities with atomic-scale confinement. Zenodo https://doi.org/10.5281/zenodo.8301463 (2023).
Dr. Thomas Hughes is a UK-based scientist and science communicator who makes complex topics accessible to readers. His articles explore breakthroughs in various scientific disciplines, from space exploration to cutting-edge research.