Self-assembled photonic cavities with atomic-scale confinement

  • Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Heiss, M. et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 12, 439–444 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Sun, Z. et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Klimchitskaya, G., Mohideen, U. & Mostepanenko, V. The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Albrechtsen, M. et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun. 13, 6281 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

    Article 
    MathSciNet 
    CAS 
    ADS 

    Google Scholar
     

  • Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Munkhbat, B., Canales, A., Küçüköz, B., Baranov, D. G. & Shegai, T. O. Tunable self-assembled Casimir microcavities and polaritons. Nature 597, 214–219 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Mastrangeli, M. et al. Self-assembly from milli- to nanoscales: methods and applications. J. Micromech. Microeng. 19, 083001 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kim, I., Mun, J., Hwang, W., Yang, Y. & Rho, J. Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures. Microsyst. Nanoeng. 6, 65 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Chang, W. et al. Concurrent self-assembly of RGB microLEDs for next-generation displays. Nature 617, 287–291 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, K. et al. A Gd@C82 single-molecule electret. Nat. Nanotechnol. 15, 1019–1024 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hah, J. H. et al. Converging lithography by combination of electrostatic layer-by-layer self-assembly and 193 nm photolithography: Top-down meets bottom-up. J. Vac. Sci. Technol. B 24, 2209–2213 (2006).

    Article 
    CAS 

    Google Scholar
     

  • George, D. & Madou, M. J. in Mechanical Sciences: The Way Forward (eds Dixit, U. S. & Dwivedy, S. K.) 197–239 (Springer, 2021).

  • Luo, S. et al. High-throughput fabrication of triangular nanogap arrays for surface-enhanced Raman spectroscopy. ACS Nano 16, 7438–7447 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouk Kim, S. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Liu, F. et al. Sculpting extreme electromagnetic field enhancement in free space for molecule sensing. Small 14, 1801146 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Palstra, I. M., Doeleman, H. M. & Koenderink, A. F. Hybrid cavity-antenna systems for quantum optics outside the cryostat? Nanophotonics 8, 1513–1531 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gondarenko, A. et al. Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures. Phys. Rev. Lett. 96, 143904 (2006).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Albrechtsen, M., Vosoughi Lahijani, B. & Stobbe, S. Two regimes of confinement in photonic nanocavities: bulk confinement versus lightning rods. Opt. Express 30, 15458–15469 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hu, S. & Weiss, S. M. Design of photonic crystal cavities for extreme light concentration. ACS Photonics 3, 1647–1653 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mork, J. & Yvind, K. Squeezing of intensity noise in nanolasers and nanoLEDs with extreme dielectric confinement. Optica 7, 1641–1644 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Choi, H., Heuck, M. & Englund, D. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys. Rev. Lett. 118, 223605 (2017).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Bozkurt, A., Joshi, C. & Mirhosseini, M. Deep sub-wavelength localization of light and sound in dielectric resonators. Opt. Express 30, 12378–12386 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hollenbach, M. et al. Wafer-scale nanofabrication of telecom single-photon emitters in silicon. Nat. Commun. 13, 7683 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Panuski, C. L. et al. A full degree-of-freedom spatiotemporal light modulator. Nat. Photonics 16, 834–842 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Bishop, K. J., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buks, E. & Roukes, M. Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys. Rev. B 63, 033402 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Rodriguez, A. W., Capasso, F. & Johnson, S. G. The Casimir effect in microstructured geometries. Nat. Photonics. 5, 211–221 (2011).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Burger, F. A., Corkery, R. W., Buhmann, S. Y. & Fiedler, J. Comparison of theory and experiments on van der waals forces in media—a survey. J. Phys. Chem. C 124, 24179–24186 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Palasantzas, G. & Svetovoy, V. B. Problems in measuring the Casimir forces at short separations. Int. J. Mod. Phys. A 37, 2241001 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Behunin, R., Intravaia, F., Dalvit, D., Neto, P. M. & Reynaud, S. Modeling electrostatic patch effects in Casimir force measurements. Phys. Rev. A 85, 012504 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gies, H. & Klingmüller, K. Casimir edge effects. Phys. Rev. Lett. 97, 220405 (2006).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Vosoughi Lahijani, B. et al. Electronic-photonic circuit crossings. Preprint at https://doi.org/10.48550/arXiv.2204.14257 (2022).

  • Chao, P., Strekha, B., Kuate Defo, R., Molesky, S. & Rodriguez, A. W. Physical limits in electromagnetism. Nat. Rev. Phys. 4, 543–559 (2022).

    Article 

    Google Scholar
     

  • Bharadwaj, S., Van Mechelen, T. & Jacob, Z. Picophotonics: anomalous atomistic waves in silicon. Phys. Rev. Appl. 18, 044065 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • He, Q. & Tang, L. Sub-5 nm nanogap electrodes towards single-molecular biosensing. Biosens. Bioelectron. 213, 114486 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Ronn, J. et al. Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement. ACS Photonics 3, 2040–2048 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Delaney, R. et al. Superconducting-qubit readout via low-backaction electro-optic transduction. Nature 606, 489–493 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Arregui, G. et al. Cavity optomechanics with Anderson-localized optical modes. Phys. Rev. Lett. 130, 043802 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rosiek, C. A. et al. Observation of strong backscattering in valley-Hall photonic topological interface modes. Nat. Photon. 17, 386–392 (2023).

  • Tsoukalas, K., Vosoughi Lahijani, B. & Stobbe, S. Impact of transduction scaling laws on nanoelectromechanical systems. Phys. Rev. Lett. 124, 223902 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Babar, A. N. et al. Self-assembled photonic cavities with atomic-scale confinement. Zenodo https://doi.org/10.5281/zenodo.8301463 (2023).

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment