Quasi-experimental evaluation of a nationwide diabetes prevention programme

  • Lin, X. et al. Global, regional and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci. Rep. 10, 14790 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bommer, C. et al. The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 5, 423–430 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Asif, M. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J. Educ. Health Promot. 3, 1 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taheri, S. et al. Effect of intensive lifestyle intervention on bodyweight and glycaemia in early type 2 diabetes (DIADEM-I): an open-label, parallel-group, randomised controlled trial. Lancet Diabetes Endocrinol. 8, 477–489 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Galaviz, K. I. et al. Interventions for reversing prediabetes: a systematic review and meta-analysis. Am. J. Prev. Med. https://doi.org/10.1016/j.amepre.2021.10.020 (2022).

  • Barry, E., Roberts, S., Finer, S., Vijayaraghavan, S. & Greenhalgh, T. Time to question the NHS diabetes prevention programme. Br. Med. J. https://doi.org/10.1136/bmj.h4717 (2015).

  • Rubio-Valera, M. et al. Barriers and facilitators for the implementation of primary prevention and health promotion activities in primary care: a synthesis through meta-ethnography. PLoS ONE 9, e89554 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hébert, E. T., Caughy, M. O. & Shuval, K. Primary care providers’ perceptions of physical activity counselling in a clinical setting: a systematic review. Br. J. Sports Med. 46, 625–631 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Dewhurst, A., Peters, S., Devereux-Fitzgerald, A. & Hart, J. Physicians’ views and experiences of discussing weight management within routine clinical consultations: a thematic synthesis. Patient Educ. Couns. 100, 897–908 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Imbens, G. W. & Lemieux, T. Regression discontinuity designs: a guide to practice. J. Econom. 142, 615–635 (2008).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 157, 107843 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 3, 866–875 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Brink, S. The Diabetes Prevention Program: how the participants did it. Health Aff. 28, 57–62 (2009).

    Article 

    Google Scholar
     

  • Type 2 Diabetes: Prevention in People at High Risk (NICE, 2012); www.nice.org.uk/guidance/ph38.

  • Henry, J. A. et al. Lifestyle advice for hypertension or diabetes: trend analysis from 2002 to 2017 in England. Br. J. Gen. Pract. 72, e269–e275 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kardakis, T., Jerdén, L., Nyström, M. E., Weinehall, L. & Johansson, H. Implementation of clinical practice guidelines on lifestyle interventions in Swedish primary healthcare—a two-year follow up. BMC Health Serv. Res. 18, 227 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milder, I. E., Blokstra, A., de Groot, J., van Dulmen, S. & Bemelmans, W. J. Lifestyle counseling in hypertension-related visits—analysis of video-taped general practice visits. BMC Fam. Pract. 9, 58 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheppard, J. P. et al. Association of guideline and policy changes with incidence of lifestyle advice and treatment for uncomplicated mild hypertension in primary care: a longitudinal cohort study in the Clinical Practice Research Datalink. BMJ Open 8, e021827 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemp, J. M. et al. Use of lifestyle interventions in primary care for individuals with newly diagnosed hypertension, hyperlipidaemia or obesity: a retrospective cohort study. J. R. Soc. Med. 115, 289–299 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Booth, H. P., Prevost, A. T. & Gulliford, M. C. Access to weight reduction interventions for overweight and obese patients in UK primary care: population-based cohort study. BMJ Open 5, e006642 (2015).

  • Irving, G. et al. International variations in primary care physician consultation time: a systematic review of 67 countries. BMJ Open 7, e017902 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keyworth, C., Epton, T., Goldthorpe, J., Calam, R. & Armitage, C. J. ‘It’s difficult, I think it’s complicated’: Health care professionals’ barriers and enablers to providing opportunistic behaviour change interventions during routine medical consultations. Br. J. Health Psychol. https://doi.org/10.1111/bjhp.12368 (2019).

  • Kennedy-Martin, T., Curtis, S., Faries, D., Robinson, S. & Johnston, J. A literature review on the representativeness of randomized controlled trial samples and implications for the external validity of trial results. Trials 16, 495 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, J. G. et al. Barriers to recruiting underrepresented populations to cancer clinical trials: a systematic review. Cancer 112, 228–242 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Rogers, J. R., Liu, C., Hripcsak, G., Cheung, Y. K. & Weng, C. Comparison of clinical characteristics between clinical trial participants and nonparticipants using electronic health record data. JAMA Netw. Open 4, e214732 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suvarna, V. Phase IV of drug development. Perspect. Clin. Res. 1, 57–60 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagger, M. S. & Weed, M. DEBATE: do interventions based on behavioral theory work in the real world? Int. J. Behav. Nutr. Phys. Act. 16, 36 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsden, A. M. et al. ‘Finishing the race’—a cohort study of weight and blood glucose change among the first 36,000 patients in a large-scale diabetes prevention programme. Int. J. Behav. Nutr. Phys. Act. 19, 7 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cattaneo, M. D., Idrobo, N. & Titiunik, R. A Practical Introduction to Regression Discontinuity Designs (Cambridge Univ. Press, 2019).

  • Valabhji, J. et al. Early outcomes from the English National Health Service Diabetes Prevention Programme. Diabetes Care 43, 152–160 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bärnighausen, T. et al. Quasi-experimental study designs series—paper 7: assessing the assumptions. J. Clin. Epidemiol. 89, 53–66 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Selvin, E. et al. Glycated hemoglobin, diabetes and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 362, 800–811 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garg, N. et al. Hemoglobin A1c in nondiabetic patients: an independent predictor of coronary artery disease and its severity. Mayo Clin. Proc. 89, 908–916 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lipsitch, M., Tchetgen Tchetgen, E. & Cohen, T. Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiology 21, 383–388 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Persson, R. et al. CPRD Aurum database: assessment of data quality and completeness of three important comorbidities. Pharmacoepidemiol. Drug Saf. 29, 1456–1464 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonas, D. E. et al. Screening for prediabetes and type 2 diabetes: updated evidence report and systematic review for the US preventive services task force. JAMA 326, 744 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pronk, N. P. Structured diet and physical activity programmes provide strong evidence of effectiveness for type 2 diabetes prevention and improvement of cardiometabolic health. Evid. Based Med. 21, 18 (2016).

  • Galaviz, K. I. et al. Global diabetes prevention interventions: a systematic review and network meta-analysis of the real-world impact on incidence, weight and glucose. Diabetes Care 41, 1526–1534 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mudaliar, U. et al. Cardiometabolic risk factor changes observed in diabetes prevention programs in US settings: a systematic review and meta-analysis. PLoS Med. 13, e1002095 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardona-Morrell, M., Rychetnik, L., Morrell, S. L., Espinel, P. T. & Bauman, A. Reduction of diabetes risk in routine clinical practice: are physical activity and nutrition interventions feasible and are the outcomes from reference trials replicable? A systematic review and meta-analysis. BMC Public Health 10, 653 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diabetes Prevention Programme: Non-Diabetic Hyperglycaemia, January to December 2021. National Diabetes Audit (NHS Digital, 2022); https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit/dpp-q3-21-22-data.

  • Whelan, M. & Bell, L. The English National Health Service Diabetes Prevention Programme (NHS DPP): a scoping review of existing evidence. Diabet. Med. 39, e14855 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calderón-Larrañaga, S. et al. Unravelling the potential of social prescribing in individual-level type 2 diabetes prevention: a mixed-methods realist evaluation. BMC Med. 21, 91 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poupakis, S., Kolotourou, M., MacMillan, H. J. & Chadwick, P. M. Attendance, weight loss and participation in a behavioural diabetes prevention programme. Int. J. Behav. Med. https://doi.org/10.1007/s12529-022-10146-x (2023).

  • Katzke, V. A., Kaaks, R. & Kühn, T. Lifestyle and cancer risk. Cancer J. 21, 104–110 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Silverio, A. et al. Cardiovascular risk factors and mortality in hospitalized patients with COVID-19: systematic review and meta-analysis of 45 studies and 18,300 patients. BMC Cardiovasc. Disord. 21, 23 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawkes, R. E., Cameron, E., Cotterill, S., Bower, P. & French, D. P. The NHS Diabetes Prevention Programme: an observational study of service delivery and patient experience. BMC Health Serv. Res. 20, 1098 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penn, L. et al. NHS Diabetes Prevention Programme in England: formative evaluation of the programme in early phase implementation. BMJ Open 8, e019467 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diabetes Prevention Programme. NHS https://gps.northcentrallondon.icb.nhs.uk/service/diabetes-prevention-programme-dpp (2023).

  • McManus, E., Meacock, R., Parkinson, B. & Sutton, M. Population level impact of the NHS Diabetes Prevention Programme on incidence of type 2 diabetes in England: an observational study. Lancet Reg. Health Eur. 19, 100420 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • National Diabetes Audit. Audit, survey, other reports and statistics. NHS Digital https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit (2018).

  • Wolf, A. et al. Data resource profile: Clinical Practice Research Datalink (CPRD) Aurum. Int. J. Epidemiol. 48, 1740–1740g (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbert, A., Wijlaars, L., Zylbersztejn, A., Cromwell, D. & Hardelid, P. Data resource profile: Hospital Episode Statistics Admitted Patient Care (HES APC). Int. J. Epidemiol. 46, 1093–1093i (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sammon, C. J., Leahy, T. P. & Ramagopalan, S. Nonindependence of patient data in the clinical practice research datalink: a case study in atrial fibrillation patients. J. Comp. Eff. Res. 9, 395–403 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hernán, M. A. Methods of public health research—strengthening causal inference from observational data. N. Engl. J. Med. 385, 1345–1348 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hernán, M. A. & Robins, J. M. Using big data to emulate a target trial when a randomized trial is not available. Am. J. Epidemiol. 183, 758–764 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Non-Diabetic Hyperglycaemia, 2019-20 (NHS Digital, 2021); https://files.digital.nhs.uk/31/C59C4B/NDA_NDH_MainReport_2019-20_V1.pdf.

  • Davidson, J. Clinical codelist—HES—Major Adverse Cardiovascular Event. London School of Hygiene & Tropical Medicine https://doi.org/10.17037/DATA.00002198 (2021).

  • Imbens, G. & Kalyanaraman, K. Optimal bandwidth choice for the regression discontinuity estimator. Rev. Econ. Stud. 79, 933–959 (2012).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Calonico, S., Cattaneo, M. D. & Titiunik, R. Robust nonparametric vonfidence intervals for regression-discontinuity designs: robust nonparametric confidence intervals. Econometrica 82, 2295–2326 (2014).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Calonico, S., Cattaneo, M. D., Farrell, M. H. & Titiunik, R. Regression discontinuity designs using covariates. Rev. Econ. Stat. 101, 442–451 (2019).

    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Calonico, S., Cattaneo, M. D., Farrell, M. H. & Titiunik, R. rdrobust: robust data-driven statistical inference in regression-discontinuity designs. R package v.2.1.0 (2022).

  • Callaway, B. & Sant’Anna, P. H. C. Difference-in-differences with multiple time periods. J. Econ. 225, 200–230 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Callaway, B. & Sant’Anna, P. did: Difference in Differences. R package v.2.1.2 (2022).

  • Proposed CCG Configuration and Member Practices Published. NHS England www.england.nhs.uk/2012/05/ccg-configuration/ (2012).

  • Output Area to Primary Care Organisation to Strategic Health Authority (December 2011) Lookup in England and Wales. ONS Geography Office of National Statistics https://geoportal.statistics.gov.uk/datasets/ons::output-area-to-primary-care-organisation-to-strategic-health-authority-december-2011-lookup-in-england-and-wales-1/about (2018).

  • Lower Layer Super Output Area (2011) to Clinical Commissioning Group to Local Authority District (April 2021) Lookup in England. ONS Geography Office of National Statistics https://geoportal.statistics.gov.uk/datasets/ons::lower-layer-super-output-area-2011-to-clinical-commissioning-group-to-local-authority-district-april-2021-lookup-in-england-1/about (2021).

  • Gaure, S. lfe: linear group fixed effects. R package v.2.8-8 (2022).

  • Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).

  • Snowden, J. M., Rose, S. & Mortimer, K. M. Implementation of G-computation on a simulated data set: demonstration of a causal inference technique. Am. J. Epidemiol. 173, 731–738 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greifer, N. & Stuart, E. A. Choosing the causal estimand for propensity score analysis of observational studies. Preprint at https://doi.org/10.48550/ARXIV.2106.10577 (2021).

  • Chatton, A. et al. G-computation, propensity score-based methods and targeted maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation study. Sci. Rep. 10, 9219 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arel-Bundock, V. marginaleffects: marginal effects, marginal means, predictions and contrasts. R package v.0.7.1 (2022).

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment