Garnero, E. J., McNamara, A. K. & Shim, S. H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).
Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).
Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).
Kokubo, E. & Ida, S. Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 114, 247–257 (1995).
Cameron, A. G. W. & Ward, W. R. The origin of the Moon. Abstr. Lunar Planet. Sci. Conf. 7, 120–122 (1976).
Ringwood, A. E. Volatile and siderophile element geochemistry of the Moon: a reappraisal. Earth Planet. Sci. Lett. 111, 537–555 (1992).
Nie, N. X. & Dauphas, N. Vapor drainage in the protolunar disk as the cause for the depletion in volatile elements of the Moon. Astrophys. J. 884, L48 (2019).
Lee, C. T. A. et al. Upside-down differentiation and generation of a primordial lower mantle. Nature 463, 930–933 (2010).
Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867–19884 (1994).
Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & Romanowicz, B. Primitive helium is sourced from seismically slow regions in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130–4145 (2019).
Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).
Desch, S. J. & Robinson, K. L. A unified model for hydrogen in the Earth and Moon: no one expects the Theia contribution. Chemie der Erde 79, 125546 (2019).
Pepin, R. O. & Porcelli, D. Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002).
Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).
Will, P., Busemann, H., Riebe, M. E. I. & Maden, C. Indigenous noble gases in the Moon’s interior. Sci. Adv. 8, 1–9 (2022).
Stewart, S. et al. The shock physics of giant impacts: key requirements for the equations of state. AIP Conf. Proc. 2272, 080003 (2020).
Kegerreis, J. A., Eke, V. R., Massey, R. J., Sandnes, T. D. & Teodoro, L. F. A. Immediate origin of the Moon as a post-impact satellite. Astrophys. J. Lett. 937, L40 (2022).
Deng, H. et al. Enhanced mixing in Giant Impact simulations with a new Lagrangian method. Astrophys. J. 870, 127 (2019).
Deng, H. et al. Primordial Earth mantle heterogeneity caused by the Moon-forming Giant Impact? Astrophys. J. 887, 211 (2019).
Cottaar, S. & Lekic, V. Morphology of seismically slow lower-mantle structures. Geophys. J. Int. 207, 1122–1136 (2016).
Kegerreis, J. A. et al. Planetary giant impacts: convergence of high-resolution simulations using efficient spherical initial conditions and SWIFT. Mon. Not. R. Astron. Soc. 487, 5029–5040 (2019).
Deguen, R., Landeau, M. & Olson, P. Turbulent metal–silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014).
Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. A 372, 20130244 (2014).
Pahlevan, K., Stevenson, D. J. & Eiler, J. M. Chemical fractionation in the silicate vapor atmosphere of the Earth. Earth Planet. Sci. Lett. 301, 433–443 (2011).
Meier, M. M. M., Reufer, A. & Wieler, R. On the origin and composition of Theia: constraints from new models of the Giant Impact. Icarus 242, 316–328 (2014).
Robinson, K. L. et al. Water in evolved lunar rocks: evidence for multiple reservoirs. Geochim. Cosmochim. Acta 188, 244–260 (2016).
Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).
Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, 1–19 (2009).
Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).
Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).
Gurnis, M. The effects of chemical density differences on convective mixing in the Earth’s mantle. J. Geophys. Res., Solid Earth 91, 11407–11419 (1986).
Tackley, P. J. in The Core‐Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffet, B. A.) 231–253 (American Geophysical Union, 1998).
Nakagawa, T., Tackley, P. J., Deschamps, F. & Connolly, J. A. D. The influence of MORB and harzburgite composition on thermo-chemical mantle convection in a 3-D spherical shell with self-consistently calculated mineral physics. Earth Planet. Sci. Lett. 296, 403–412 (2010).
Gu, T., Li, M., McCammon, C. & Lee, K. K. M. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nat. Geosci. 9, 723–727 (2016).
Yuan, Q. & Li, M. Instability of the African large low-shear-wave-velocity province due to its low intrinsic density. Nat. Geosci. 15, 334–339 (2022).
McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).
O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).
Hernlund, J. W. & Houser, C. On the statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008).
Lei, W. et al. Global adjoint tomography – model GLAD-M25. Geophys. J. Int. 223, 1–21 (2020).
Elkins-Tanton, L. T. Magma oceans in the inner Solar System. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).
Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 1, 27–39 (1997).
Solomatov, V. S. in Treatise on Geophysics 1st edn, Vol. 9 (ed. Schubert, G.) 91–119 (Elsevier, 2007).
Maurice, M. et al. Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res., Planets 122, 577–598 (2017).
Boukaré, C. E., Parmentier, E. M. & Parman, S. W. Timing of mantle overturn during magma ocean solidification. Earth Planet. Sci. Lett. 491, 216–225 (2018).
Labrosse, S., Morison, A., Deguen, R. & Alboussière, T. Rayleigh–Bénard convection in a creeping solid with melting and freezing at either or both its horizontal boundaries. J. Fluid Mech. 846, 5–36 (2018).
Agrusta, R. et al. Mantle convection interacting with magma oceans. Geophys. J. Int. 220, 1878–1892 (2020).
Morison, A., Labrosse, S., Deguen, R. & Alboussière, T. Timescale of overturn in a magma ocean cumulate. Earth Planet. Sci. Lett. 516, 25–36 (2019).
Becker, T. W., Kellogg, J. B. & O’Connell, R. J. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett. 171, 351–365 (1999).
Lock, S. J., Bermingham, K. R., Parai, R. & Boyet, M. Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities. Space Sci. Rev. 216, 1–46 (2020).
Ballmer, M. D., Lourenço, D. L., Hirose, K., Caracas, R. & Nomura, R. Reconciling magma-ocean crystallization models with the present-day structure of the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 2785–2806 (2017).
Maas, C. & Hansen, U. Dynamics of a terrestrial magma ocean under planetary rotation: a study in spherical geometry. Earth Planet. Sci. Lett. 513, 81–94 (2019).
Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).
Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).
Li, M., McNamara, A. K. & Garnero, E. J. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat. Geosci. 7, 366–370 (2014).
Mulyukova, E., Steinberger, B., Dabrowski, M. & Sobolev, S. V. Survival of LLSVPs for billions of years in a vigorously convecting mantle: replenishment and destruction of chemical anomaly. J. Geophys. Res., Solid Earth 120, 3824–3847 (2015).
Jackson, M. G. et al. Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc. Natl Acad. Sci. USA 117, 30993–31001 (2020).
Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. R. Astron. Soc. 66, 579–596 (1981).
Stacey, F. D. A thermal model of the earth. Phys. Earth Planet. Inter. 15, 341–348 (1977).
Canup, R. M., Barr, A. C. & Crawford, D. A. Lunar-forming impacts: high-resolution SPH and AMR-CTH simulations. Icarus 222, 200–219 (2013).
Hosono, N., Saitoh, T. R., Makino, J., Genda, H. & Ida, S. The Giant Impact simulations with density independent smoothed particle hydrodynamics. Icarus 271, 131–157 (2016).
Reinhardt, C. & Stadel, J. Numerical aspects of Giant Impact simulations. Mon. Not. R. Astron. Soc. 467, 4252–4263 (2017).
Ruiz-Bonilla, S. et al. Dealing with density discontinuities in planetary SPH simulations. Mon. Not. R. Astron. Soc. 512, 4660–4668 (2022).
Hosono, N. & Karato, S. The influence of equation of state on the Giant Impact simulations. J. Geophys. Res., Planets 127, 1–18 (2022).
Hosono, N. et al. Unconvergence of very-large-scale Giant Impact simulations. Publ. Astron. Soc. Jpn 69, 1–11 (2017).
Meier, T., Reinhardt, C. & Stadel, J. G. The EOS/resolution conspiracy: convergence in proto-planetary collision simulations. Mon. Not. R. Astron. Soc. 1816, 1806–1816 (2021).
Raskin, C. & Owen, J. M. Examining the accuracy of astrophysical disk simulations with a generalized hydrodynamical test problem. Astrophys. J. 831, 26 (2016).
Gabriel, T. S. J. & Allen-Sutter, H. Dependencies of mantle shock heating in pairwise accretion. Astrophys. J. Lett. 915, L32 (2021).
Frontiere, N., Raskin, C. D. & Owen, J. M. CRKSPH – a conservative reproducing kernel smoothed particle hydrodynamics scheme. J. Comput. Phys. 332, 160–209 (2017).
Rosswog, S. Astrophysical smooth particle hydrodynamics. New Astron. Rev. 53, 78–104 (2009).
Schaller, M. et al. SWIFT: SPH with inter-dependent fine-grained tasking. In Astrophysics Source Code Library, ascl-1805 (2018).
Ruiz-Bonilla, S., Eke, V. R., Kegerreis, J. A., Massey, R. J. &Teodoro, L. F. A. The effect of pre-impact spin on the Moon-forming collision. Mon. Not. R. Astron. Soc. 2870, 2861–2870 (2021).
Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1056 (2012).
Hopkins, P. F. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 450, 53–110 (2015).
Thompson, S. L. & Lauson, H. S. Improvements in the Chart D Radiation—Hydrodynamic Code. III. Revised Analytic Equation of State. Sandia Report SC-RR-71 0174 (1972).
Melosh, H. J. A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 2079–2098 (2007).
Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).
Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).
Abe, Y. in Evolution of the Earth and Planets (eds Takahashi, E., Jeanloz, R. & Rubie, D.) 41–54 (American Geophysical Union, 1993).
Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical consequences: 2. Compositional differentiation under crystal accumulation and matrix compaction. J. Geophys. Res., Solid Earth 124, 3399–3419 (2019).
Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473, 199–202 (2011).
Andrault, D. et al. Solid–liquid iron partitioning in Earth’s deep mantle. Nature 487, 354–357 (2012).
Moresi, L. N. & Solomatov, V. S. Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995).
Farrell, K. A. O. & Lowman, J. P. Emulating the thermal structure of spherical shell convection in plane-layer geometry mantle convection models. Phys. Earth Planet. Inter. 182, 73–84 (2010).
Tackley, P. J. & King, S. D. Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst. 4, 1–15 (2003).
Schaller, M. et al. Swift: a modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications. Preprint at http://arxiv.org/abs/2305.13380 (2023).
Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).
Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).
Dr. Thomas Hughes is a UK-based scientist and science communicator who makes complex topics accessible to readers. His articles explore breakthroughs in various scientific disciplines, from space exploration to cutting-edge research.