Moon-forming impactor as a source of Earth’s basal mantle anomalies

  • Garnero, E. J., McNamara, A. K. & Shim, S. H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kokubo, E. & Ida, S. Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 114, 247–257 (1995).

    Article 

    Google Scholar
     

  • Cameron, A. G. W. & Ward, W. R. The origin of the Moon. Abstr. Lunar Planet. Sci. Conf. 7, 120–122 (1976).


    Google Scholar
     

  • Ringwood, A. E. Volatile and siderophile element geochemistry of the Moon: a reappraisal. Earth Planet. Sci. Lett. 111, 537–555 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Nie, N. X. & Dauphas, N. Vapor drainage in the protolunar disk as the cause for the depletion in volatile elements of the Moon. Astrophys. J. 884, L48 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C. T. A. et al. Upside-down differentiation and generation of a primordial lower mantle. Nature 463, 930–933 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867–19884 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & Romanowicz, B. Primitive helium is sourced from seismically slow regions in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130–4145 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desch, S. J. & Robinson, K. L. A unified model for hydrogen in the Earth and Moon: no one expects the Theia contribution. Chemie der Erde 79, 125546 (2019).

    Article 

    Google Scholar
     

  • Pepin, R. O. & Porcelli, D. Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Will, P., Busemann, H., Riebe, M. E. I. & Maden, C. Indigenous noble gases in the Moon’s interior. Sci. Adv. 8, 1–9 (2022).

    Article 

    Google Scholar
     

  • Stewart, S. et al. The shock physics of giant impacts: key requirements for the equations of state. AIP Conf. Proc. 2272, 080003 (2020).

    Article 

    Google Scholar
     

  • Kegerreis, J. A., Eke, V. R., Massey, R. J., Sandnes, T. D. & Teodoro, L. F. A. Immediate origin of the Moon as a post-impact satellite. Astrophys. J. Lett. 937, L40 (2022).

    Article 

    Google Scholar
     

  • Deng, H. et al. Enhanced mixing in Giant Impact simulations with a new Lagrangian method. Astrophys. J. 870, 127 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Deng, H. et al. Primordial Earth mantle heterogeneity caused by the Moon-forming Giant Impact? Astrophys. J. 887, 211 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cottaar, S. & Lekic, V. Morphology of seismically slow lower-mantle structures. Geophys. J. Int. 207, 1122–1136 (2016).

    Article 

    Google Scholar
     

  • Kegerreis, J. A. et al. Planetary giant impacts: convergence of high-resolution simulations using efficient spherical initial conditions and SWIFT. Mon. Not. R. Astron. Soc. 487, 5029–5040 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Deguen, R., Landeau, M. & Olson, P. Turbulent metal–silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. A 372, 20130244 (2014).

    Article 

    Google Scholar
     

  • Pahlevan, K., Stevenson, D. J. & Eiler, J. M. Chemical fractionation in the silicate vapor atmosphere of the Earth. Earth Planet. Sci. Lett. 301, 433–443 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Meier, M. M. M., Reufer, A. & Wieler, R. On the origin and composition of Theia: constraints from new models of the Giant Impact. Icarus 242, 316–328 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, K. L. et al. Water in evolved lunar rocks: evidence for multiple reservoirs. Geochim. Cosmochim. Acta 188, 244–260 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, 1–19 (2009).

    Article 

    Google Scholar
     

  • Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gurnis, M. The effects of chemical density differences on convective mixing in the Earth’s mantle. J. Geophys. Res., Solid Earth 91, 11407–11419 (1986).

    Article 

    Google Scholar
     

  • Tackley, P. J. in The Core‐Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffet, B. A.) 231–253 (American Geophysical Union, 1998).

  • Nakagawa, T., Tackley, P. J., Deschamps, F. & Connolly, J. A. D. The influence of MORB and harzburgite composition on thermo-chemical mantle convection in a 3-D spherical shell with self-consistently calculated mineral physics. Earth Planet. Sci. Lett. 296, 403–412 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gu, T., Li, M., McCammon, C. & Lee, K. K. M. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nat. Geosci. 9, 723–727 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Q. & Li, M. Instability of the African large low-shear-wave-velocity province due to its low intrinsic density. Nat. Geosci. 15, 334–339 (2022).

    Article 
    CAS 

    Google Scholar
     

  • McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).

    Article 

    Google Scholar
     

  • Hernlund, J. W. & Houser, C. On the statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lei, W. et al. Global adjoint tomography – model GLAD-M25. Geophys. J. Int. 223, 1–21 (2020).

    Article 

    Google Scholar
     

  • Elkins-Tanton, L. T. Magma oceans in the inner Solar System. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 1, 27–39 (1997).

    Article 

    Google Scholar
     

  • Solomatov, V. S. in Treatise on Geophysics 1st edn, Vol. 9 (ed. Schubert, G.) 91–119 (Elsevier, 2007).

  • Maurice, M. et al. Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res., Planets 122, 577–598 (2017).

    Article 

    Google Scholar
     

  • Boukaré, C. E., Parmentier, E. M. & Parman, S. W. Timing of mantle overturn during magma ocean solidification. Earth Planet. Sci. Lett. 491, 216–225 (2018).

    Article 

    Google Scholar
     

  • Labrosse, S., Morison, A., Deguen, R. & Alboussière, T. Rayleigh–Bénard convection in a creeping solid with melting and freezing at either or both its horizontal boundaries. J. Fluid Mech. 846, 5–36 (2018).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Agrusta, R. et al. Mantle convection interacting with magma oceans. Geophys. J. Int. 220, 1878–1892 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Morison, A., Labrosse, S., Deguen, R. & Alboussière, T. Timescale of overturn in a magma ocean cumulate. Earth Planet. Sci. Lett. 516, 25–36 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Becker, T. W., Kellogg, J. B. & O’Connell, R. J. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett. 171, 351–365 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Lock, S. J., Bermingham, K. R., Parai, R. & Boyet, M. Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities. Space Sci. Rev. 216, 1–46 (2020).

    Article 

    Google Scholar
     

  • Ballmer, M. D., Lourenço, D. L., Hirose, K., Caracas, R. & Nomura, R. Reconciling magma-ocean crystallization models with the present-day structure of the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 2785–2806 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Maas, C. & Hansen, U. Dynamics of a terrestrial magma ocean under planetary rotation: a study in spherical geometry. Earth Planet. Sci. Lett. 513, 81–94 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, M., McNamara, A. K. & Garnero, E. J. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat. Geosci. 7, 366–370 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mulyukova, E., Steinberger, B., Dabrowski, M. & Sobolev, S. V. Survival of LLSVPs for billions of years in a vigorously convecting mantle: replenishment and destruction of chemical anomaly. J. Geophys. Res., Solid Earth 120, 3824–3847 (2015).

    Article 

    Google Scholar
     

  • Jackson, M. G. et al. Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc. Natl Acad. Sci. USA 117, 30993–31001 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. R. Astron. Soc. 66, 579–596 (1981).

    Article 
    MATH 

    Google Scholar
     

  • Stacey, F. D. A thermal model of the earth. Phys. Earth Planet. Inter. 15, 341–348 (1977).

    Article 

    Google Scholar
     

  • Canup, R. M., Barr, A. C. & Crawford, D. A. Lunar-forming impacts: high-resolution SPH and AMR-CTH simulations. Icarus 222, 200–219 (2013).

    Article 

    Google Scholar
     

  • Hosono, N., Saitoh, T. R., Makino, J., Genda, H. & Ida, S. The Giant Impact simulations with density independent smoothed particle hydrodynamics. Icarus 271, 131–157 (2016).

    Article 

    Google Scholar
     

  • Reinhardt, C. & Stadel, J. Numerical aspects of Giant Impact simulations. Mon. Not. R. Astron. Soc. 467, 4252–4263 (2017).

    Article 

    Google Scholar
     

  • Ruiz-Bonilla, S. et al. Dealing with density discontinuities in planetary SPH simulations. Mon. Not. R. Astron. Soc. 512, 4660–4668 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hosono, N. & Karato, S. The influence of equation of state on the Giant Impact simulations. J. Geophys. Res., Planets 127, 1–18 (2022).

    Article 

    Google Scholar
     

  • Hosono, N. et al. Unconvergence of very-large-scale Giant Impact simulations. Publ. Astron. Soc. Jpn 69, 1–11 (2017).

    Article 

    Google Scholar
     

  • Meier, T., Reinhardt, C. & Stadel, J. G. The EOS/resolution conspiracy: convergence in proto-planetary collision simulations. Mon. Not. R. Astron. Soc. 1816, 1806–1816 (2021).

    Article 

    Google Scholar
     

  • Raskin, C. & Owen, J. M. Examining the accuracy of astrophysical disk simulations with a generalized hydrodynamical test problem. Astrophys. J. 831, 26 (2016).

    Article 

    Google Scholar
     

  • Gabriel, T. S. J. & Allen-Sutter, H. Dependencies of mantle shock heating in pairwise accretion. Astrophys. J. Lett. 915, L32 (2021).

    Article 

    Google Scholar
     

  • Frontiere, N., Raskin, C. D. & Owen, J. M. CRKSPH – a conservative reproducing kernel smoothed particle hydrodynamics scheme. J. Comput. Phys. 332, 160–209 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Rosswog, S. Astrophysical smooth particle hydrodynamics. New Astron. Rev. 53, 78–104 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Schaller, M. et al. SWIFT: SPH with inter-dependent fine-grained tasking. In Astrophysics Source Code Library, ascl-1805 (2018).

  • Ruiz-Bonilla, S., Eke, V. R., Kegerreis, J. A., Massey, R. J. &Teodoro, L. F. A. The effect of pre-impact spin on the Moon-forming collision. Mon. Not. R. Astron. Soc. 2870, 2861–2870 (2021).


    Google Scholar
     

  • Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1056 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopkins, P. F. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 450, 53–110 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Thompson, S. L. & Lauson, H. S. Improvements in the Chart D Radiation—Hydrodynamic Code. III. Revised Analytic Equation of State. Sandia Report SC-RR-71 0174 (1972).

  • Melosh, H. J. A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 2079–2098 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Abe, Y. in Evolution of the Earth and Planets (eds Takahashi, E., Jeanloz, R. & Rubie, D.) 41–54 (American Geophysical Union, 1993).

  • Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical consequences: 2. Compositional differentiation under crystal accumulation and matrix compaction. J. Geophys. Res., Solid Earth 124, 3399–3419 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473, 199–202 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrault, D. et al. Solid–liquid iron partitioning in Earth’s deep mantle. Nature 487, 354–357 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moresi, L. N. & Solomatov, V. S. Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995).

    Article 
    MATH 

    Google Scholar
     

  • Farrell, K. A. O. & Lowman, J. P. Emulating the thermal structure of spherical shell convection in plane-layer geometry mantle convection models. Phys. Earth Planet. Inter. 182, 73–84 (2010).

    Article 

    Google Scholar
     

  • Tackley, P. J. & King, S. D. Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst. 4, 1–15 (2003).

    Article 

    Google Scholar
     

  • Schaller, M. et al. Swift: a modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications. Preprint at http://arxiv.org/abs/2305.13380 (2023).

  • Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article 

    Google Scholar
     

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment