Öberg, K. I., Murray-Clay, R. & Bergin, E. A. The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. Lett. 743, L16 (2011).
Madhusudhan, N. C/O ratio as a dimension for characterizing exoplanetary atmospheres. Astrophys. J. 758, 36 (2012).
Burrows, A., Hubbard, W. B., Lunine, J. I. & Liebert, J. The theory of brown dwarfs and extrasolar giant planets. Rev. Mod. Phys. 73, 719–765 (2001).
Adel, A. & Slipher, V. M. The constitution of the atmospheres of the giant planets. Phys. Rev. 46, 902–906 (1934).
Guillot, T. et al. Giant planets from the inside-out. Preprint at https://arxiv.org/abs/2205.04100 (2022).
Stevenson, K. et al. Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b. Nature 464, 1161–1164 (2010).
Désert, J.-M. et al. Observational evidence for a metal-rich atmosphere on the super-Earth GJ1214b. Astrophys. J. Lett. 731, L40 (2011).
Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron. 3, 813–821 (2019).
Triaud, A. H. M. J. et al. WASP-80b has a dayside within the T-dwarf range. Mon. Not. R. Astron. Soc. 450, 2279–2290 (2015).
Swain, M. R., Vasisht, G. & Tinetti, G. The presence of methane in the atmosphere of an extrasolar planet. Nature 452, 329–331 (2008).
Gibson, N. P., Pont, F. & Aigrain, S. A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features. Mon. Not. R. Astron. Soc. 411, 2199–2213 (2011).
Giacobbe, P. et al. Five carbon- and nitrogen-bearing species in a hot giant planet’s atmosphere. Nature 592, 205–208 (2021).
Guilluy, G. et al. The GAPS programme at TNG: XXXVIII. Five molecules in the atmosphere of the warm giant planet WASP-69b detected at high spectral resolution. Astron. Astrophys. 665, A104 (2022).
Carleo, I. et al. The GAPS Programme at TNG XXXIX. Multiple Molecular Species in the Atmosphere of the Warm Giant Planet WASP-80 b Unveiled at High Resolution with GIANO-B. Astron. J. 164, 101 (2022).
Kreidberg, L. et al. A precise water abundance measurement for the hot Jupiter WASP-43b. Astrophys. J. Lett. 793, L27 (2014).
Welbanks, L. et al. Mass-metallicity trends in transiting exoplanets from atmospheric abundances of H2O, Na, and K. Astrophys. J. Lett. 887, L20 (2019).
Bean, J. L. et al. High atmospheric metal enrichment for a Saturn-mass planet. Nature 618, 43–46 (2023).
Triaud, A. H. M. J. et al. WASP-80b: a gas giant transiting a cool dwarf. Astron. Astrophys. 551, A80 (2013).
Bryant, E. M., Bayliss, D. & Van Eylen, V. The occurrence rate of giant planets orbiting low-mass stars with TESS. Mon. Not. R. Astron. Soc. 521, 3663–3681 (2023).
Schlawin, E., Greene, T. P., Line, M., Fortney, J. J. & Rieke, M. Clear and cloudy exoplanet forecasts for JWST: maps, retrieved composition, and constraints on formation with MIRI and NIRCam. Astron. J. 156, 40 (2018).
Moses, J. I. et al. Compositional diversity in the atmospheres of hot Neptunes, with application to GJ 436b. Astrophys. J. 777, 34 (2013).
Fukui, A. et al. Multi-band, multi-epoch observations of the transiting warm Jupiter WASP-80b. Astrophys. J. 790, 108 (2014).
Wong, I. et al. The Hubble PanCET program: a featureless transmission spectrum for WASP-29b and evidence of enhanced atmospheric metallicity on WASP-80b. Astron. J. 164, 30 (2022).
Tsiaras, A. et al. A population study of gaseous exoplanets. Astron. J. 155, 156 (2018).
Horner, S. D. & Rieke, M. J. The near-infrared camera (NIRCam) for the James Webb Space Telescope (JWST). In Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 5487 (ed. Mather, J. C.) 628–634 (SPIE, 2004).
Bell, T. et al. Eureka!: an end-to-end pipeline for JWST time-series observations. J. Open Source Softw. 7, 4503 (2022).
Schlawin, E. & Glidic, K. GitHub https://github.com/eas342/tshirt (2022).
Madhusudhan, N. In Handbook of Exoplanets (eds Deeg, H. & Belmonte, J.), 104 (Springer, 2018).
Welbanks, L. & Madhusudhan, N. Aurora: a generalized retrieval framework for exoplanetary transmission spectra. Astrophys. J. 913, 114 (2021).
Madhusudhan, N. & Seager, S. A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707, 24–39 (2009).
Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest algorithm. Open J. Astrophys. 2, https://doi.org/10.21105/astro.1306.2144 (2019).
Perez-Becker, D. & Showman, A. P. Atmospheric heat redistribution on hot Jupiters. Astrophys. J. 776, 134 (2013).
Cooper, C. S. & Showman, A. P. Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. Astrophys. J. 649, 1048–1063 (2006).
Thorngren, D. P., Fortney, J. J., Murray-Clay, R. A. & Lopez, E. D. The mass-metallicity relation for giant planets. Astrophys. J. 831, 64 (2016).
Madhusudhan, N. & Seager, S. High metallicity and non-equilibrium chemistry in the dayside atmosphere of hot-Neptune GJ 436b. Astrophys. J. 729, 41 (2011).
Morley, C. V. et al. Forward and inverse modeling of the emission and transmission spectrum of GJ 436b: investigating metal enrichment, tidal heating, and clouds. Astron. J. 153, 86 (2017).
Fortney, J. J. et al. Beyond equilibrium temperature: how the atmosphere/interior connection affects the onset of methane, ammonia, and clouds in warm transiting giant planets. Astron. J. 160, 288 (2020).
Bushouse, H. et al. Jwst calibration pipeline. Zenodo https://doi.org/10.5281/zenodo.7325378 (2022).
Ahrer, E.-M. et al. Early release science of the exoplanet WASP-39b with JWST NIRCam. Nature 614, 653–658 (2023).
Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609–617 (1986).
Schlawin, E. et al. JWST NIRCam defocused imaging: photometric stability performance and how it can sense mirror tilts. Publ. Astron. Soc. Pac. 135, 018001 (2023).
Schlawin, E. et al. JWST noise floor. I. Random error sources in JWST NIRCam time series. Astron. J. 160, 231 (2020).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Luger, R. et al. starry: analytic occultation light curves. Astron. J. 157, 64 (2019).
Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).
Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in python using pymc3. PeerJ Comp. Sci. 2, e55 (2016).
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Statist. Sci. 7, 457–472 (1992).
Mancini, L. et al. Physical properties and transmission spectrum of the WASP-80 planetary system from multi-colour photometry. Astron. Astrophys. 562, A126 (2014).
Kirk, J. et al. LRG-BEASTS III: ground-based transmission spectrum of the gas giant orbiting the cool dwarf WASP-80. Mon. Not. R. Astron. Soc. 474, 876–885 (2018).
Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).
Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).
Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).
Benneke, B. & Seager, S. How to distinguish between Cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).
Fortney, J. J., Barstow, J. K. & Madhusudhan, N. in ExoFrontiers; Big Questions in Exoplanetary Science (ed. Madhusudhan, N.), 17-1–17-10 (IOP Science, 2021).
Welbanks, L. & Madhusudhan, N. On atmospheric retrievals of exoplanets with inhomogeneous terminators. Astrophys. J. 933, 79 (2022).
Line, M. R. et al. A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775, 137 (2013).
Gandhi, S. & Madhusudhan, N. Retrieval of exoplanet emission spectra with HyDRA. Mon. Not. R. Astron. Soc. 474, 271–288 (2018).
Seager, S. Exoplanet Atmospheres: Physical Processes (Princeton Univ. Press, 2010).
Husser, T. O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).
Pinhas, A., Rackham, B. V., Madhusudhan, N. & Apai, D. Retrieval of planetary and stellar properties in transmission spectroscopy with aura. Mon. Not. R. Astron. Soc. 480, 5314–5331 (2018).
Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).
Yurchenko, S. N. & Tennyson, J. ExoMol line lists – IV. The rotation-vibration spectrum of methane up to 1500 K. Mon. Not. R. Astron. Soc. 440, 1649–1661 (2014).
Yurchenko, S. N., Barber, R. J. & Tennyson, J. A variationally computed line list for hot NH3. Mon. Not. R. Astron. Soc. 413, 1828–1834 (2011).
Underwood, D. S. et al. ExoMol molecular line lists – XIV. The rotation–vibration spectrum of hot SO2. Mon. Not. R. Astron. Soc. 459, 3890–3899 (2016).
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the sun. Ann. Rev. Astron. Astrophys. 47, 481–522 (2009).
Richard, C. et al. New section of the HITRAN database: collision-induced absorption (CIA). J. Quant. Spectrosc. Radiat. Transf. 113, 1276–1285 (2012).
Line, M. R. & Parmentier, V. The Influence of nonuniform cloud cover on transit transmission spectra. Astrophys. J. 820, 78 (2016).
Fortney, J. J., Marley, M. S., Lodders, K., Saumon, D. & Freedman, R. Comparative planetary atmospheres: models of TrES-1 and HD 209458b. Astrophys. J. Lett. 627, L69–L72 (2005).
Kataria, T. et al. The atmospheric circulation of a nine-hot-Jupiter sample: probing circulation and chemistry over a wide phase space. Astrophys. J. 821, 9 (2016).
Welbanks, L. & Madhusudhan, N. On degeneracies in retrievals of exoplanetary transmission spectra. Astron. J. 157, 206 (2019).
Marley, M. S. & Robinson, T. D. On the cool side: modeling the atmospheres of brown dwarfs and giant planets. Ann. Rev. Astron. Astrophys. 53, 279–323 (2015).
Piskorz, D. et al. Ground- and space-based detection of the thermal emission spectrum of the transiting hot Jupiter KELT-2Ab. Astron. J. 156, 133 (2018).
Mansfield, M. et al. A unique hot Jupiter spectral sequence with evidence for compositional diversity. Nat. Astron. 5, 1224–1232 (2021).
Iyer, A. R., Line, M. R., Muirhead, P. S., Fortney, J. J. & Gharib-Nezhad, E. The SPHINX M-dwarf spectral grid. I. Benchmarking new model atmospheres to derive fundamental M-dwarf properties. Astrophys. J. 944, 41 (2023).
Tsai, S.-M. et al. VULCAN: an open-source, validated chemical kinetics Python code for exoplanetary atmospheres. Astrophys. J. Suppl. 228, 20 (2017).
Tsai, S.-M. et al. Photochemically produced SO2 in the atmosphere of WASP-39b. Nature 617, 483–487 (2023).
Thorngren, D., Gao, P. & Fortney, J. J. The intrinsic temperature and radiative-convective boundary depth in the atmospheres of hot Jupiters. Astrophys. J. Lett. 884, L6 (2019).
Lodders, K., Palme, H. & Gail, H.-P. in The Solar System Vol. 4B (ed. J. E. Trümper) 712 (SpringerMaterials, 2009).
Gordon, S. & Mcbride, B. J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part 1: Analysis. Report No. 19950013764 (NASA, 1994).
France, K. et al. The MUSCLES Treasury Survey. I. Motivation and overview. Astrophys. J. 820, 89 (2016).
Youngblood, A. et al. The MUSCLES Treasury Survey. II. Intrinsic LYα and extreme ultraviolet spectra of K and M dwarfs with exoplanets. Astrophys. J. 824, 101 (2016).
Loyd, R. O. P. et al. The MUSCLES Treasury Survey. III. X-ray to infrared spectra of 11 M and K stars hosting planets. Astrophys. J. 824, 102 (2016).
Komacek, T. D., Showman, A. P. & Parmentier, V. Vertical tracer mixing in hot Jupiter atmospheres. Astrophys. J. 881, 152 (2019).
Tennyson, J. et al. The 2020 release of the ExoMol database: molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 255, 107228 (2020).
Grimm, S. L. & Heng, K. helios-k: an ultrafast, open-source opacity calculator for radiative transfer. Astrophys. J. 808, 182 (2015).
Karman, T. et al. Update of the HITRAN collision-induced absorption section. Icarus 328, 160–175 (2019).
Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).
Li, G. et al. Rovibrational line lists for nine isotopologues of the CO molecule in the X1Σ+ ground electronic state. Astrophys. J. Suppl. 216, 15 (2015).
Huang, X., Schwenke, D. W., Tashkun, S. A. & Lee, T. J. An isotopic-independent highly accurate potential energy surface for CO2 isotopologues and an initial 12C16O2 infrared line list. J. Chem. Phys. 136, 124311 (2012).
Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020).
Coles, P. A., Yurchenko, S. N. & Tennyson, J. ExoMol molecular line lists – XXXV. A rotation-vibration line list for hot ammonia. Mon. Not. R. Astron. Soc. 490, 4638–4647 (2019).
Harris, G. J., Tennyson, J., Kaminsky, B. M., Pavlenko, Y. V. & Jones, H. R. A. Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas. Mon. Not. R. Astron. Soc. 367, 400–406 (2006).
Chubb, K. L., Tennyson, J. & Yurchenko, S. N. ExoMol molecular line lists – XXXVII. Spectra of acetylene. Mon. Not. R. Astron. Soc. 493, 1531–1545 (2020).
Azzam, A. A. A., Tennyson, J., Yurchenko, S. N. & Naumenko, O. V. ExoMol molecular line lists – XVI. The rotation-vibration spectrum of hot H2S. Mon. Not. R. Astron. Soc. 460, 4063–4074 (2016).
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Astropy Collaboration. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).
Astropy Collaboration. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Allan, D. W. Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966).
Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 vision. Astron. Astrophys. 653, A141 (2021).
Dr. Thomas Hughes is a UK-based scientist and science communicator who makes complex topics accessible to readers. His articles explore breakthroughs in various scientific disciplines, from space exploration to cutting-edge research.