Fractional quantum anomalous Hall effect in multilayer graphene

  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tang, E., Mei, J. W. & Wen, X. G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).


    Google Scholar
     

  • Sheng, D. N., Gu, Z. C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Moore, G. & Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Wen, X. G. Non-Abelian statistics in the fractional quantum Hall states. Phys. Rev. Lett. 66, 802 (1991).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature https://doi.org/10.1038/s41586-023-06289-w (2023).

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature https://doi.org/10.1038/S41586-023-06536-0 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature https://doi.org/10.1038/S41586-023-06452-3 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS 

    Google Scholar
     

  • Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. Phys. Rev. B 47, 7312 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Kundu, H. K., Biswas, S., Ofek, N., Umansky, V. & Heiblum, M. Anyonic interference and braiding phase in a Mach-Zehnder interferometer. Nat. Phys. 19, 515–521 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lindner, N. H., Berg, E., Refael, G. & Stern, A. Fractionalizing Majorana fermions: non-Abelian statistics on the edges of abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012).


    Google Scholar
     

  • Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nat. Commun. 4, 1348 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Vaezi, A. Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B Condens. Matter Mater. Phys. 87, 035132 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator. Science 367, 895–900 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & Macdonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H., Kumar, U., Sun, K. & Lin, S. Z. Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices. Phys. Rev. Res. 3, L032070 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

  • Yu, H., Chen, M. & Yao, W. Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors. Natl Sci. Rev. 7, 12–20 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Crépel, V. & Fu, L. Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides. Phys. Rev. B 107, L201109 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ledwith, P. J., Tarnopolsky, G., Khalaf, E. & Vishwanath, A. Fractional Chern insulator states in twisted bilayer graphene: an analytical approach. Phys Rev Res 2, 023237 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Abouelkomsan, A., Liu, Z. & Bergholtz, E. J. Particle-hole duality, emergent fermi liquids, and fractional Chern insulators in moiré flatbands. Phys. Rev. Lett. 124, 106803 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Devakul, T. et al. Magic-angle helical trilayer graphene. Sci. Adv. 9, eadi6063 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gao, Q., Dong, J., Ledwith, P., Parker, D. & Khalaf, E. Untwisting moiré physics: almost ideal bands and fractional Chern insulators in periodically strained monolayer graphene. Phys. Rev. Lett. 131, 096401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Repellin, C. & Senthil, T. Chern bands of twisted bilayer graphene: fractional Chern insulators and spin phase transition. Phys. Rev. Res. 2, 023238 (2020).

  • Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koshino, M. & McCann, E. Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene. Phys. Rev. B 80, 165409 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, Y., Kim, Y., Chittari, B. L. & Jung, J. Topological flat bands in rhombohedral tetralayer and multilayer graphene on hexagonal boron nitride moire superlattices. Phys. Rev. B. 108, 155406 (2023).

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Goldman, H., Reddy, A. P., Paul, N. & Fu, L. Zero-field composite Fermi liquid in twisted semiconductor bilayers. Phys. Rev. Lett. 131, 136501 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, J., Wang, J., Ledwith, P. J., Vishwanath, A. & Parker, D. E. Composite Fermi liquid at zero magnetic field in twisted MoTe2. Phys. Rev. Lett. 131, 136502 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barkeshli, M. & McGreevy, J. Continuous transitions between composite Fermi liquid and Landau Fermi liquid: a route to fractionalized Mott insulators. Phys. Rev. B. Condens. Matter Mater. Phys. 86, 075136 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Song, X.-Y., Zhang, Y.-H. & Senthil, T. Phase transitions out of quantum Hall states in moire TMD bilayers. Preprint at https://arxiv.org/abs/2308.10903 (2023).

  • Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L., Zhang, Y., Camacho, J., Khodas, M. & Zaliznyak, I. The experimental observation of quantum Hall effect of l = 3 chiral quasiparticles in trilayer graphene. Nat. Phys. 7, 953–957 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zou, K., Zhang, F., Clapp, C., MacDonald, A. H. & Zhu, J. Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields. Nano Lett. 13, 369–373 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y. et al. Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun. 5, 5656 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Myhro, K. et al. Large tunable intrinsic gap in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater. 5, 045013 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral stacked graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01520-1 (2023).

  • Han, T. et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 623, 41–47 (2023).

  • Liu, K. et al. Interaction-driven spontaneous broken-symmetry insulator and metals in ABCA tetralayer graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01558-1 (2023).

  • Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Tunable orbital ferromagnetism at noninteger filling of a moiré superlattice. Nano Lett. 22, 238–245 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sample, H. H., Bruno, W. J., Sample, S. B. & Sichel, E. K. Reverse‐field reciprocity for conducting specimens in magnetic fields. J. Appl. Phys. 61, 1079–1084 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment