Dynamic diagnosis of metamaterials through laser-induced vibrational signatures

  • Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tancogne-Dejean, T., Diamantopoulou, M., Gorji, M. B., Bonatti, C. & Mohr, D. 3D plate-lattices: an emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. Adv. Mater. 30, 1803334 (2018).

    Article 

    Google Scholar
     

  • Berger, J. B., Wadley, H. N. & McMeeking, R. M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543, 533–537 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krödel, S. & Daraio, C. Microlattice metamaterials for tailoring ultrasonic transmission with elastoacoustic hybridization. Phys. Rev. Appl. 6, 064005 (2016).

    Article 

    Google Scholar
     

  • Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & Wegener, M. Ultrasound experiments on acoustical activity in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayat, A. & Gaitanaros, S. Wave directionality in three-dimensional periodic lattices. J. Appl. Mech. 85, 011004 (2017).

    Article 

    Google Scholar
     

  • Portela, C. M. et al. Supersonic impact resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, C. Q. & Daraio, C. Highly porous microlattices as ultrathin and efficient impact absorbers. Int. J. Impact Eng. 120, 138–149 (2018).

    Article 

    Google Scholar
     

  • Dattelbaum, D. M., Ionita, A., Patterson, B. M., Branch, B. A. & Kuettner, L. Shockwave dissipation by interface-dominated porous structures. AIP Adv. 10, 075016 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mueller, J., Matlack, K. H., Shea, K. & Daraio, C. Energy absorption properties of periodic and stochastic 3D lattice materials. Adv. Theory Simul. 2, 1900081 (2019).

    Article 

    Google Scholar
     

  • Weeks, J. S. & Ravichandran, G. High strain-rate compression behavior of polymeric rod and plate Kelvin lattice structures. Mech. Mater. 166, 104216 (2022).

    Article 

    Google Scholar
     

  • Guo, Y. et al. Minimal surface-based materials for topological elastic wave guiding. Adv. Funct. Mater. 32, 2204122 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Matlack, K. H., Bauhofer, A., Krödel, S., Palermo, A. & Daraio, C. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl Acad. Sci. 113, 8386–8390 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussein, M. I. & Frazier, M. J. Metadamping: an emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767–4774 (2013).

    Article 

    Google Scholar
     

  • Hawreliak, J. A. et al. Dynamic behavior of engineered lattice materials. Sci. Rep. 6, 28094 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lind, J., Robinson, A. K. & Kumar, M. Insight into the coordinated jetting behavior in periodic lattice structures under dynamic compression. J. Appl. Phys. 128, 015901 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Crook, C. et al. Plate-nanolattices at the theoretical limit of stiffness and strength. Nat. Commun. 11, 1579 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meza, L. R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Portela, C. M. et al. Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proc. Natl Acad. Sci. 117, 5686–5693 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guell Izard, A., Bauer, J., Crook, C., Turlo, V. & Valdevit, L. Ultrahigh energy absorption multifunctional spinodal nanoarchitectures. Small 15, 1903834 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Babaee, S. et al. 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farzaneh, A., Pawar, N., Portela, C. M. & Hopkins, J. B. Sequential metamaterials with alternating Poisson’s ratios. Nat. Commun. 13, 1041 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, L. et al. Guided transition waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. USA 117, 2319–2325 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Baravelli, E. & Ruzzene, M. Internally resonating lattices for bandgap generation and low-frequency vibration control. J. Sound Vib. 332, 6562–6579 (2013).

    Article 

    Google Scholar
     

  • Iglesias Martínez, J. A. et al. Experimental observation of roton-like dispersion relations in metamaterials. Sci. Adv. 7, eabm2189 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meza, L. R. et al. Reexamining the mechanical property space of three-dimensional lattice architectures. Acta Mater. 140, 424–432 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lind, J., Jensen, B. J., Barham, M. & Kumar, M. In situ dynamic compression wave behavior in additively manufactured lattice materials. J. Mater. Res. 34, 2–19 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Deshpande, V. S., Fleck, N. A. & Ashby, M. F. Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & Kochmann, D. M. Inverting the structure–property map of truss metamaterials by deep learning. Proc. Natl Acad. Sci. 119, e2111505119 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weeks, J. S., Gandhi, V. & Ravichandran, G. Shock compression behavior of stainless steel 316L octet-truss lattice structures. Int. J. Impact Eng. 169, 104324 (2022).

    Article 

    Google Scholar
     

  • Tancogne-Dejean, T., Spierings, A. B. & Mohr, D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Mater. 116, 14–28 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gongora, A. E. et al. Designing lattices for impact protection using transfer learning. Matter 5, 2829–2846 (2022).

    Article 

    Google Scholar
     

  • Mao, Y., He, Q. & Zhao, X. Designing complex architectured materials with generative adversarial networks. Sci. Adv. 6, eaaz4169 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abi Ghanem, M. et al. Longitudinal eigenvibration of multilayer colloidal crystals and the effect of nanoscale contact bridges. Nanoscale 11, 5655–5665 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akimov, A., Young, E., Sharp, J., Gusev, V. & Kent, A. Coherent hypersonic closed-pipe organ like modes in supported polymer films. Appl. Phys. Lett. 99, 021912 (2011).

    Article 

    Google Scholar
     

  • Dryburgh, P. et al. Measurement of the single crystal elasticity matrix of polycrystalline materials. Acta Mater. 225, 117551 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rohbeck, N. et al. Effect of high strain rates and temperature on the micromechanical properties of 3D-printed polymer structures made by two-photon lithography. Mater. Des. 195, 108977 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Salari-Sharif, L. et al. Damping of selectively bonded 3D woven lattice materials. Sci. Rep. 8, 14572 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pouet, B. F. & Rasolofosaon, N. J. P. Measurement of broadband intrinsic ultrasonic attenuation and dispersion in solids with laser techniques. J. Acoust. Soc. Am. 93, 1286–1292 (1993).

    Article 

    Google Scholar
     

  • Garrett, S. L. Understanding Acoustics: An Experimentalist’s View of Sound and Vibration (Springer, 2020).

  • Szabo, T. L. Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96, 491–500 (1994).

    Article 

    Google Scholar
     

  • Szabo, T. L. & Wu, J. A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107, 2437–2446 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patil, G. U. & Matlack, K. H. Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization. J. Acoust. Soc. Am. 145, 1259–1269 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graff, K. F. Wave Motion in Elastic Solids (Dover Publications, 2012).

  • Gross, A., Pantidis, P., Bertoldi, K. & Gerasimidis, S. Correlation between topology and elastic properties of imperfect truss-lattice materials. J. Mech. Phys. Solids 124, 577–598 (2019).

    Article 

    Google Scholar
     

  • Liu, L., Kamm, P., García-Moreno, F., Banhart, J. & Pasini, D. Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids 107, 160–184 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Glaesener, R. et al. Predicting the influence of geometric imperfections on the mechanical response of 2D and 3D periodic trusses. Acta Mater. 254, 118918 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment