Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).
Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).
Tancogne-Dejean, T., Diamantopoulou, M., Gorji, M. B., Bonatti, C. & Mohr, D. 3D plate-lattices: an emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. Adv. Mater. 30, 1803334 (2018).
Berger, J. B., Wadley, H. N. & McMeeking, R. M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543, 533–537 (2017).
Krödel, S. & Daraio, C. Microlattice metamaterials for tailoring ultrasonic transmission with elastoacoustic hybridization. Phys. Rev. Appl. 6, 064005 (2016).
Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & Wegener, M. Ultrasound experiments on acoustical activity in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019).
Bayat, A. & Gaitanaros, S. Wave directionality in three-dimensional periodic lattices. J. Appl. Mech. 85, 011004 (2017).
Portela, C. M. et al. Supersonic impact resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).
Lai, C. Q. & Daraio, C. Highly porous microlattices as ultrathin and efficient impact absorbers. Int. J. Impact Eng. 120, 138–149 (2018).
Dattelbaum, D. M., Ionita, A., Patterson, B. M., Branch, B. A. & Kuettner, L. Shockwave dissipation by interface-dominated porous structures. AIP Adv. 10, 075016 (2020).
Mueller, J., Matlack, K. H., Shea, K. & Daraio, C. Energy absorption properties of periodic and stochastic 3D lattice materials. Adv. Theory Simul. 2, 1900081 (2019).
Weeks, J. S. & Ravichandran, G. High strain-rate compression behavior of polymeric rod and plate Kelvin lattice structures. Mech. Mater. 166, 104216 (2022).
Guo, Y. et al. Minimal surface-based materials for topological elastic wave guiding. Adv. Funct. Mater. 32, 2204122 (2022).
Matlack, K. H., Bauhofer, A., Krödel, S., Palermo, A. & Daraio, C. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl Acad. Sci. 113, 8386–8390 (2016).
Hussein, M. I. & Frazier, M. J. Metadamping: an emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767–4774 (2013).
Hawreliak, J. A. et al. Dynamic behavior of engineered lattice materials. Sci. Rep. 6, 28094 (2016).
Lind, J., Robinson, A. K. & Kumar, M. Insight into the coordinated jetting behavior in periodic lattice structures under dynamic compression. J. Appl. Phys. 128, 015901 (2020).
Crook, C. et al. Plate-nanolattices at the theoretical limit of stiffness and strength. Nat. Commun. 11, 1579 (2020).
Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016).
Meza, L. R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).
Portela, C. M. et al. Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proc. Natl Acad. Sci. 117, 5686–5693 (2020).
Guell Izard, A., Bauer, J., Crook, C., Turlo, V. & Valdevit, L. Ultrahigh energy absorption multifunctional spinodal nanoarchitectures. Small 15, 1903834 (2019).
Babaee, S. et al. 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013).
Farzaneh, A., Pawar, N., Portela, C. M. & Hopkins, J. B. Sequential metamaterials with alternating Poisson’s ratios. Nat. Commun. 13, 1041 (2022).
Jin, L. et al. Guided transition waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. USA 117, 2319–2325 (2020).
Baravelli, E. & Ruzzene, M. Internally resonating lattices for bandgap generation and low-frequency vibration control. J. Sound Vib. 332, 6562–6579 (2013).
Iglesias Martínez, J. A. et al. Experimental observation of roton-like dispersion relations in metamaterials. Sci. Adv. 7, eabm2189 (2021).
Meza, L. R. et al. Reexamining the mechanical property space of three-dimensional lattice architectures. Acta Mater. 140, 424–432 (2017).
Lind, J., Jensen, B. J., Barham, M. & Kumar, M. In situ dynamic compression wave behavior in additively manufactured lattice materials. J. Mater. Res. 34, 2–19 (2019).
Deshpande, V. S., Fleck, N. A. & Ashby, M. F. Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001).
Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & Kochmann, D. M. Inverting the structure–property map of truss metamaterials by deep learning. Proc. Natl Acad. Sci. 119, e2111505119 (2022).
Weeks, J. S., Gandhi, V. & Ravichandran, G. Shock compression behavior of stainless steel 316L octet-truss lattice structures. Int. J. Impact Eng. 169, 104324 (2022).
Tancogne-Dejean, T., Spierings, A. B. & Mohr, D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Mater. 116, 14–28 (2016).
Gongora, A. E. et al. Designing lattices for impact protection using transfer learning. Matter 5, 2829–2846 (2022).
Mao, Y., He, Q. & Zhao, X. Designing complex architectured materials with generative adversarial networks. Sci. Adv. 6, eaaz4169 (2020).
Abi Ghanem, M. et al. Longitudinal eigenvibration of multilayer colloidal crystals and the effect of nanoscale contact bridges. Nanoscale 11, 5655–5665 (2019).
Akimov, A., Young, E., Sharp, J., Gusev, V. & Kent, A. Coherent hypersonic closed-pipe organ like modes in supported polymer films. Appl. Phys. Lett. 99, 021912 (2011).
Dryburgh, P. et al. Measurement of the single crystal elasticity matrix of polycrystalline materials. Acta Mater. 225, 117551 (2022).
Rohbeck, N. et al. Effect of high strain rates and temperature on the micromechanical properties of 3D-printed polymer structures made by two-photon lithography. Mater. Des. 195, 108977 (2020).
Salari-Sharif, L. et al. Damping of selectively bonded 3D woven lattice materials. Sci. Rep. 8, 14572 (2018).
Pouet, B. F. & Rasolofosaon, N. J. P. Measurement of broadband intrinsic ultrasonic attenuation and dispersion in solids with laser techniques. J. Acoust. Soc. Am. 93, 1286–1292 (1993).
Garrett, S. L. Understanding Acoustics: An Experimentalist’s View of Sound and Vibration (Springer, 2020).
Szabo, T. L. Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96, 491–500 (1994).
Szabo, T. L. & Wu, J. A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107, 2437–2446 (2000).
Patil, G. U. & Matlack, K. H. Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization. J. Acoust. Soc. Am. 145, 1259–1269 (2019).
Graff, K. F. Wave Motion in Elastic Solids (Dover Publications, 2012).
Gross, A., Pantidis, P., Bertoldi, K. & Gerasimidis, S. Correlation between topology and elastic properties of imperfect truss-lattice materials. J. Mech. Phys. Solids 124, 577–598 (2019).
Liu, L., Kamm, P., García-Moreno, F., Banhart, J. & Pasini, D. Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids 107, 160–184 (2017).
Glaesener, R. et al. Predicting the influence of geometric imperfections on the mechanical response of 2D and 3D periodic trusses. Acta Mater. 254, 118918 (2023).
Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).
Dr. Thomas Hughes is a UK-based scientist and science communicator who makes complex topics accessible to readers. His articles explore breakthroughs in various scientific disciplines, from space exploration to cutting-edge research.