Disordered enthalpy–entropy descriptor for high-entropy ceramics discovery

  • Zhang, R.-Z. & Reece, M. J. Review of high entropy ceramics: design, synthesis, structure and properties. J. Mater. Chem. A 7, 22148–22162 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feng, L., Fahrenholtz, W. G. & Brenner, D. W. High-entropy ultra-high-temperature borides and carbides: a new class of materials for extreme environments. Annu. Rev. Mater. Res. 51, 165–185 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calzolari, A. et al. Plasmonic high-entropy carbides. Nat. Commun. 13, 5993 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oganov, A. R. (ed.) Modern Methods of Crystal Structure Prediction (Wiley, 2010).

  • Dellago, C., Bolhuis, P. G., Csajka, F. S. & Chandler, D. Transition path sampling and the calculation of rate constants. J. Chem. Phys. 108, 1964–1977 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Mining unexplored chemistries for phosphors for high-color-quality white-light-emitting diodes. Joule 2, 914–926 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bartel, C. J., Weimer, A. W., Lany, S., Musgrave, C. B. & Holder, A. M. The role of decomposition reactions in assessing first-principles predictions of solid stability. NPJ Comput. Mater. 5, 4 (2019).

    Article 
    ADS 

    Google Scholar
     

  • O’Donnell, S. et al. Pushing the limits of metastability in semiconducting perovskite oxides for visible-light-driven water oxidation. Chem. Mater. 32, 3054–3064 (2020).

    Article 

    Google Scholar
     

  • Singstock, N. R. et al. Machine learning guided synthesis of multinary Chevrel phase chalcogenides. J. Am. Chem. Soc. 143, 9113–9122 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in chemical and materials sciences. Nat. Synth. 2, 483–492 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hart, G. L. W., Mueller, T., Toher, C. & Curtarolo, S. Machine learning and alloys. Nat. Rev. Mater. 6, 730–755 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hossain, M. D. et al. Entropy landscaping of high-entropy carbides. Adv. Mater. 33, 2102904 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Esters, M. et al. aflow.org: a web ecosystem of databases, software and tools. Comput. Mater. Sci. 216, 111808 (2023).

    Article 

    Google Scholar
     

  • Oses, C. et al. aflow++: a C++ framework for autonomous materials design. Comput. Mater. Sci. 217, 111889 (2023).

    Article 

    Google Scholar
     

  • de Fontaine, D. in Solid State Physics Vol. 47 (eds Ehrenreich, H. & Turnbull, D.) 33–176 (Academic Press, 1994).

  • Lederer, Y., Toher, C., Vecchio, K. S. & Curtarolo, S. The search for high entropy alloys: a high-throughput ab initio approach. Acta Mater. 159, 364–383 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, K., Oses, C. & Curtarolo, S. Modeling off-stoichiometry materials with a high-throughput ab-initio approach. Chem. Mater. 28, 6484–6492 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Esters, M. et al. Settling the matter of the role of vibrations in the stability of high-entropy carbides. Nat. Commun. 12, 5747 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krug, R. R., Hunter, W. G. & Grieger, R. A. Statistical interpretation of enthalpy – entropy compensation. Nature 261, 566–567 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ye, B., Wen, T., Huang, K., Wang, C.-Z. & Chu, Y. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic. J. Am. Ceram. Soc. 102, 4344–4352 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yan, X. et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J. Am. Ceram. Soc. 101, 4486–4491 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceram. Int. 44, 22014–22018 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dippo, O. F., Mesgarzadeh, N., Harrington, T. J., Schrader, G. D. & Vecchio, K. S. Bulk high-entropy nitrides and carbonitrides. Sci. Rep. 10, 21288 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Réjasse, F., Rapaud, O., Trolliard, G., Masson, O. & Maitre, A. Experimental investigation and thermodynamic evaluation of the C-O-Zr ternary system. RSC Adv. 6, 100122–100135 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Réjasse, F., Rapaud, O., Trolliard, G., Masson, O. & Maitre, A. Experimental investigation and thermodynamic evaluation of the C-Hf-O ternary system. J. Am. Chem. Soc. 100, 3757–3770 (2017).


    Google Scholar
     

  • Barrett, C. S. & Massalski, T. B. Structure of Metals 3rd edn (Pergamon Press, 1980).

  • Feng, L., Monteverde, F., Fahrenholtz, W. G. & Hilmas, G. E. Superhard high-entropy AlB2-type diboride ceramics. Scr. Mater. 199, 113855 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Friedrich, R. et al. Coordination corrected ab initio formation enthalpies. NPJ Comput. Mater. 5, 59 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Castle, E., Csanádi, T., Grasso, S., Dusza, J. & Reece, M. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 8, 8609 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chicardi, E., García-Garrido, C., Hernández-Saz, J. & Gotor, F. Synthesis of all equiatomic five-transition metals high entropy carbides of the IVB (Ti, Zr, Hf) and VB (V, Nb, Ta) groups by a low temperature route. Ceram. Int. 46, 21421–21430 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Harrington, T. J. et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 166, 271–280 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chicardi, E., García-Garrido, C. & Gotor, F. J. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceram. Int. 45, 21858–21863 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wei, X.-F. et al. High entropy carbide ceramics from different starting materials. J. Eur. Ceram. Soc. 39, 2989–2994 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kaufmann, K. et al. Discovery of high-entropy ceramics via machine learning. NPJ Comput. Mater. 6, 42 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, P. et al. High-entropy carbide-nitrides with enhanced toughness and sinterability. Sci. China Mater. 64, 2037–2044 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wen, T., Ye, B., Nguyen, M. C., Ma, M. & Chu, Y. Thermophysical and mechanical properties of novel high-entropy metal nitride-carbides. J. Am. Ceram. Soc. 103, 6475–6489 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, S. et al. Synthesis of novel single-phase high-entropy metal carbonitride ceramic powders. Int. J. Refract. Metals Hard Mater. 94, 105390 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D., Liu, H., Ning, S., Ye, B. & Chu, Y. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction. J. Am. Ceram. Soc. 102, 7071–7076 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D., Wen, T., Ye, B. & Chu, Y. Synthesis of superfine high-entropy metal diboride powders. Scr. Mater. 167, 110–114 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gild, J. et al. Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering. Ceram. Int. 46, 6906–6913 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction. J. Eur. Ceram. Soc. 39, 3920–3924 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gild, J., Kaufmann, K., Vecchio, K. & Luo, J. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics. Scr. Mater. 170, 106–110 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Feng, L., Fahrenholtz, W. G. & Hilmas, G. E. Processing of dense high-entropy boride ceramics. J. Eur. Ceram. Soc. 40, 3815–3823 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gild, J. et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tallarita, G., Licheri, R., Garroni, S., Orrù, R. & Cao, G. Novel processing route for the fabrication of bulk high-entropy metal diborides. Scr. Mater. 158, 100–104 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Dense high-entropy boride ceramics with ultra-high hardness. Scr. Mater. 164, 135–139 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tallarita, G. et al. High-entropy transition metal diborides by reactive and non-reactive spark plasma sintering: a comparative investigation. J. Eur. Ceram. Soc. 40, 942–952 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Iwan, S. et al. High-pressure high-temperature synthesis and thermal equation of state of high-entropy transition metal boride. AIP Adv. 11, 035107 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qin, M. et al. Dual-phase high-entropy ultra-high temperature ceramics. J. Eur. Ceram. Soc. 40, 5037–5050 (2020).

    Article 
    CAS 

    Google Scholar
     

  • A. Drabold, D. Topics in the theory of amorphous materials. Eur. Phys. J. B 68, 1–21 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Perim, E. et al. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat. Commun. 7, 12315 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hicks, D. et al. AFLOW-SYM: platform for the complete, automatic and self-consistent symmetry analysis of crystals. Acta Crystallogr. Sect. A 74, 184–203 (2018).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Hicks, D. et al. AFLOW-XtalFinder: a reliable choice to identify crystalline prototypes. NPJ Comput. Mater. 7, 30 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Calderon, C. E. et al. The AFLOW standard for high-throughput materials science calculations. Comput. Mater. Sci. 108, 233–238 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chepulskii, R. V. & Curtarolo, S. Calculation of solubility in titanium alloys from first principles. Acta Mater. 57, 5314 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oses, C. et al. AFLOW-CHULL: cloud-oriented platform for autonomous phase stability analysis. J. Chem. Inf. Model. 58, 2477–2490 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, R. H. et al. A RESTful API for exchanging materials data in the AFLOWLIB.org consortium. Comput. Mater. Sci. 93, 178–192 (2014).

    Article 

    Google Scholar
     

  • Rose, F. et al. AFLUX: the LUX materials search API for the AFLOW data repositories. Comput. Mater. Sci. 137, 362–370 (2017).

    Article 

    Google Scholar
     

  • George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Toher, C. et al. High-entropy ceramics: propelling applications through disorder. MRS Bull. 47, 194–202 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, L. et al. High-entropy thermal barrier coating of rare-earth zirconate: a case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying. J. Eur. Ceram. Soc. 40, 5731–5739 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, J. et al. Ultra-low thermal conductivity and enhanced mechanical properties of high-entropy rare earth niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb). J. Eur. Ceram. Soc. 41, 1052–1057 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, J. et al. Dual-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity. J. Eur. Ceram. Soc. 41, 2861–2869 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering. Appl. Phys. Lett. 118, 071905 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Braic, V., Vladescu, A., Balaceanu, M., Luculescu, C. R. & Braic, M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf. Coat. Technol. 211, 117–121 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hsueh, H.-T., Shen, W.-J., Tsai, M.-H. & Yeh, J.-W. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx. Surf. Coat. Technol. 206, 4106–4112 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dinu, M. et al. In vitro corrosion resistance of Si containing multi-principal element carbide coatings. Mater. Corros. 67, 908–914 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Malinovskis, P. et al. Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Mater. Des. 149, 51–62 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ye, B., Wen, T., Liu, D. & Chu, Y. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air. Corros. Sci. 153, 327–332 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y. et al. Electrical and thermal transport behaviours of high-entropy perovskite thermoelectric oxides. J. Adv. Ceram. 10, 377–384 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, B. et al. Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nat. Commun. 12, 3234 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarkar, A. et al. High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Y. et al. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 23, 678–683 (2019).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Opportunities for high-entropy materials in rechargeable batteries. ACS Mater. Lett. 3, 160–170 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. J. Mater. Chem. A 6, 11129–11133 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhai, S. et al. The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. Energy Environ. Sci. 11, 2172–2178 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Mater. Lett. 1, 83–88 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fracchia, M. et al. Stabilization by configurational entropy of the Cu(II) active site during CO oxidation on Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. J. Phys. Chem. Lett. 11, 3589–3593 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehl, M. J. et al. The AFLOW Library of Crystallographic Prototypes: part 1. Comput. Mater. Sci. 136, S1–S828 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hicks, D. et al. The AFLOW Library of Crystallographic Prototypes: part 2. Comput. Mater. Sci. 161, S1–S1011 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hicks, D. et al. The AFLOW Library of Crystallographic Prototypes: part 3. Comput. Mater. Sci. 199, 110450 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, F. et al. Liquid precursor-derived high-entropy carbide nanopowders. Ceram. Int. 45, 22437–22441 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Zhou, Y. Synthesis of single-phase high-entropy carbide powders. Scr. Mater. 162, 90–93 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sure, J., Vishnu, S. S. M., Kim, H.-K. & Schwandt, C. Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angew. Chem. Int. Ed. 59, 11830–11835 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Curtarolo, S. Boro/carbothermal reduction co-synthesis of dual-phase high-entropy boride-carbide ceramics. J. Am. Ceram. Soc. 43, 2708–2712 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Arganda-Carreras, I. et al. Trainable Weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment