Ancestral photoreceptor diversity as the basis of visual behaviour

  • Baden, T. Circuit mechanisms for colour vision in zebrafish. Curr. Biol. 31, R807–R820 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dacey, D. M. & Packer, O. S. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 13, 421–427 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson, D.-E. The diversity of eyes and vision. Annu. Rev. Vis. Sci. 7, 19–41 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cronin, T. W. & Bok, M. J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 219, 2790–2801 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Baden, T. & Osorio, D. The retinal basis of vertebrate color vision. Annu. Rev. Vis. Sci. 5, 177–200 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagen, J. F. D., Roberts, N. S. & Johnston, R. J. The evolutionary history and spectral tuning of vertebrate visual opsins. Dev. Biol. 493, 40–66 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartel, P., Janiak, F. K., Osorio, D. & Baden, T. Colourfulness as a possible measure of object proximity in the larval zebrafish brain. Curr. Biol. 31, R235–R236 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelber, A. Bird colour vision – from cones to perception. Curr. Opin. Behav. Sci. 30, 34–40 (2019).

    Article 

    Google Scholar
     

  • Baden, T. From water to land: the evolution of photoreceptor circuits for vision on land. PLoS Biol., https://doi.org/10.1371/journal.pbio.3002422 (2024).

  • Qiu, Y. et al. Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations. Curr. Biol. https://doi.org/10.1016/j.cub.2021.05.017 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baden, T. et al. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80, 1206–1217 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadal-Nicolás, F. M. et al. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 9, e56840 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szatko, K. P. et al. Neural circuits in the mouse retina support color vision in the upper visual field. Nat. Commun. 11, 3481 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denman, D. J. et al. Mouse color and wavelength-specific luminance contrast sensitivity are non-uniform across visual space. eLife 7, e31209 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franke, K. et al. Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky. Preprint at bioRxiv https://doi.org/10.1101/2023.06.01.543054 (2023).

  • Yoshimatsu, T. et al. Ancestral circuits for vertebrate color vision emerge at the first retinal synapse. Sci. Adv. 7, 6815–6828 (2021).

    Article 

    Google Scholar
     

  • Bartel, P., Yoshimatsu, T., Janiak, F. K. & Baden, T. Spectral inference reveals principal cone-integration rules of the zebrafish inner retina. Curr. Biol. (2021).

  • Krauss, A. & Neumeyer, C. Wavelength dependence of the optomotor response in zebrafish (Danio rerio). Vis. Res. 43, 1273–1282 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Khan, B. et al. Zebrafish larvae use stimulus intensity and contrast to estimate distance to prey. Curr. Biol. 33, 3179–3191.e4 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cronly-Dillon, J. R. & Muntz, W. R. A. The spectral sensitivity of the goldfish and the clawed toad tadpole under photopic conditions. J. Exp. Biol. 42, 481–493 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campenhausen, M. V. & Kirschfeld, K. Spectral sensitivity of the accessory optic system of the pigeon. J. Comp. Physiol. A 183, 1–6 (1998).

    Article 

    Google Scholar
     

  • Wang, X., Roberts, P. A., Yoshimatsu, T., Lagnado, L. & Baden, T. Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina. Cell Rep. 42, 112055 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaneko, A. Receptive field organization of bipolar and amacrine cells in the goldfish retina. J. Physiol. 235, 133–153 (1973).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feuda, R., Hamilton, S. C., McInerney, J. O. & Pisani, D. Metazoan opsin evolution reveals a simple route to animal vision. Proc. Natl Acad. Sci. USA 109, 18868–18872 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baden, T., Euler, T. & Berens, P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21, 5–20 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hart, N. S. Vision in sharks and rays: opsin diversity and colour vision. Semin. Cell Dev. Biol. 106, 12–19 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Seifert, M., Baden, T. & Osorio, D. The retinal basis of vision in chicken. Semin. Cell Dev. Biol. 106, 106–115 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G. & Kelber, A. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435–461 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Baden, T. Vertebrate vision: lessons from non-model species. Semin. Cell Dev. Biol. 106, 1–4 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Walls, G. L. The Vertebrate Eye and its Adaptive Radiation (Cranbrook Institute of Science, 1942).

  • Potier, S., Mitkus, M. & Kelber, A. Visual adaptations of diurnal and nocturnal raptors. Semin. Cell Dev. Biol. 106, 116–126 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Baden, T., Schubert, T., Berens, P. & Euler, T. The functional organization of vertebrate retinal circuits for vision. Oxf. Res. Encycl. Neurosci. https://doi.org/10.1093/acrefore/9780190264086.013.68 (2018).

  • Behrens, C. et al. Connectivity map of bipolar cells and photoreceptors in the mouse retina. eLife 5, 1206–1217 (2016).

    Article 

    Google Scholar
     

  • Goetz, J. et al. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep. 40, 111040 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Günther, A. et al. Double cones and the diverse connectivity of photoreceptors and bipolar cells in an avian retina. J. Neurosci. 41, 5015–5028 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collin, S. P. A web-based archive for topographic maps of retinal cell distribution in vertebrates. Clin. Exp. Optom. 91, 85–95 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Mass, A. M. Visual field organization and retinal resolution in the beluga whale Delphinapterus leucas (Pallas). Dokl. Biol. Sci. 381, 555–558 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lisney, T. J., Wylie, D. R., Kolominsky, J. & Iwaniuk, A. N. Eye morphology and retinal topography in hummingbirds (Trochilidae: Aves). Brain Behav. Evol. 86, 176–190 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ali, M.-A. & Anctil, M. Retinas of Fishes: An Atlas (Springer, 1976).

  • de Busserolles, F., Fogg, L., Cortesi, F. & Marshall, J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.05.027 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bowmaker, J. K., Loew, E. R. & Ott, M. The cone photoreceptors and visual pigments of chameleons. J. Comp. Physiol. A https://doi.org/10.1007/s00359-005-0014-4 (2005).

    Article 

    Google Scholar
     

  • Carleton, K. L., Escobar-Camacho, D., Stieb, S. M., Cortesi, F. & Justin Marshall, N. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J. Exp. Biol. 223, jeb193334 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vorobyev, M. Ecology and evolution of primate colour vision. Clin. Exp. Optom. 87, 230–238 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Stieb, S. M. et al. A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Sci. Rep. 9, 16459 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Applebury, M. L. et al. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27, 513–523 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ricci, V., Ronco, F., Boileau, N. & Salzburger, W. Visual opsin gene expression evolution in the adaptive radiation of cichlid fishes of Lake Tanganyika. Sci. Adv. 9, eadg6568 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortesi, F. et al. Visual system diversity in coral reef fishes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.06.007 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bloomfield, S. A. & Dacheux, R. F. Rod vision: pathways and processing in the mammalian retina. Prog. Retin. Eye Res. 20, 351–384 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. N., Tsujimura, T., Kawamura, S. & Dowling, J. E. Bipolar cell–photoreceptor connectivity in the zebrafish (Danio rerio) retina. J. Comp. Neurol. 520, 3786–3802 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hellevik, A. M. et al. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.557433 (2023).

  • Mariani, A. P. Neuronal and synaptic organization of the outer plexiform layer of the pigeon retina. Am. J. Anat. 179, 25–39 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamagata, M., Yan, W. & Sanes, J. R. A cell atlas of the chick retina based on single-cell transcriptomics. eLife 10, e63907 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn, J. et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature, https://doi.org/10.1038/s41586-023-06638-9 (2023).

  • Haverkamp, S. et al. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25, 5438–5445 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsukamoto, Y. & Omi, N. Classification of mouse retinal bipolar cells: type-specific connectivity with special reference to rod-driven aii amacrine pathways. Front. Neuroanat. 11, 92 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshimatsu, T., Schröder, C., Nevala, N. E., Berens, P. & Baden, T. Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish. Neuron 107, 320–337.e6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann, M. J. Y. et al. Zebrafish differentially process color across visual space to match natural scenes. Curr. Biol. 28, 2018–2032.e5 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schröder, C., Oesterle, J., Berens, P., Yoshimatsu, T. & Baden, T. Distinct synaptic transfer functions in same-type photoreceptors. eLife 10, e67851 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novales Flamarique, I. Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc. R. Soc. B 280, 20122490 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Browman, H. I., Novales-Flamarique, I. & Hawryshyn, C. W. Ultraviolet photoreception contributes to prey search behaviour in two species of zooplanktivorous fishes. J. Exp. Biol. 186, 187–198 (1994).

    Article 

    Google Scholar
     

  • Orger, M. B. & Baier, H. Channeling of red and green cone inputs to the zebrafish optomotor response. Vis. Neurosci. 22, 275–281 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Sinha, R. et al. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168, 413–426.e12 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baudin, J., Angueyra, J. M., Sinha, R. & Rieke, F. S-cone photoreceptors in the primate retina are functionally distinct from L and M cones. eLife 8, e39166 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Packer, O. S., Verweij, J., Li, P. H., Schnapf, J. L. & Dacey, D. M. Blue–yellow opponency in primate S cone photoreceptors. J. Neurosci. 30, 568–572 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toomey, M. B. & Corbo, J. C. Evolution, development and function of vertebrate cone oil droplets. Front. Neural Circuits 11, 97 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kemmler, R., Schultz, K., Dedek, K., Euler, T. & Schubert, T. Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J. Neurosci. 34, 11826–11843 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yedutenko, M., Howlett, M. H. C. & Kamermans, M. Enhancing the dark side: asymmetric gain of cone photoreceptors underpins their discrimination of visual scenes based on skewness. J. Physiol. 600, 123–142 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamermans, M., van Dijk, B. W. & Spekreijse, H. Color opponency in cone-driven horizontal cells in carp retina. Aspecific pathways between cones and horizontal cells. J. Gen. Physiol. 97, 819–843 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woźniak, B. & Dera, J. Light Absorption in Sea Water (Springer, 2006).

  • Nityananda, V. & Read, J. C. A. Stereopsis in animals: evolution, function and mechanisms. J. Exp. Biol. 220, 2502–2512 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yonas, A., Elieff, C. A. & Arterberry, M. E. Emergence of sensitivity to pictorial depth cues: charting development in individual infants. Infant Behav. Dev. 25, 495–514 (2002).

    Article 

    Google Scholar
     

  • Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15, 507–519 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bollmann, J. H. The zebrafish visual system: from circuits to behavior. Annu. Rev. Vis. Sci. 5, 269–293 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Robles, E., Laurell, E. & Baier, H. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity. Curr. Biol. 24, 2085–2096 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roska, B. & Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583–587 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bae, J. A. et al. Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell 173, 1293–1306.e19 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kubo, F. et al. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81, 1344–1359 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Semmelhack, J. L. et al. A dedicated visual pathway for prey detection in larval zebrafish. eLife 3, e04878 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kölsch, Y. et al. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron 109, 645–662.e9 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, M. et al. Zebrafish retinal ganglion cells asymmetrically encode spectral and temporal information across visual space. Curr. Biol. 30, 2927–2942.e7 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. et al. An unconventional glutamatergic circuit in the retina formed by vGluT3 amacrine cells. Neuron 84, 708–715 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacoby, J. & Schwartz, G. W. Three small-receptive-field ganglion cells in the mouse retina are distinctly tuned to size, speed, and object motion. J. Neurosci. 37, 610–625 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Briggman, K. L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klaassen, L. J., de Graaff, W., Van Asselt, J. B., Klooster, J. & Kamermans, M. Specific connectivity between photoreceptors and horizontal cells in the zebrafish retina. J. Neurophysiol. 116, 2799–2814 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torvund, M. M., Ma, T. S., Connaughton, V. P., Ono, F. & Nelson, R. F. Cone signals in monostratified and bistratified amacrine cells of adult zebrafish retina. J. Comp. Neurol. 525, 1532–1557 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franke, K. et al. Inhibition decorrelates visual feature representations in the inner retina. Nature 542, 439–444 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masland, R. H. The tasks of amacrine cells. Vis. Neurosci. 29, 3–9 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosa, J. M., Ruehle, S., Ding, H. & Lagnado, L. Crossover inhibition generates sustained visual responses in the inner retina. Neuron 90, 308–319 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fornetto, C., Tiso, N., Pavone, F. S. & Vanzi, F. Colored visual stimuli evoke spectrally tuned neuronal responses across the central nervous system of zebrafish larvae. BMC Biol. 18, 172 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guggiana Nilo, D. A., Riegler, C., Hübener, M. & Engert, F. Distributed chromatic processing at the interface between retina and brain in the larval zebrafish. Curr. Biol. 31, 1945–1953.e5 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menzel, R. in Comparative Physiology and Evolution of Vision in Invertebrates (ed. Autrum, H.) 503–580 (Springer, 1979).

  • Wade, N. J. & Brožek, J. Purkinje’s Vision: The Dawning of Neuroscience (Pyschology Press, 2001).

  • Arpa, S., Ritschel, T., Myszkowski, K., Çapın, T. & Seidel, H.-P. Purkinje images: conveying different content for different luminance adaptations in a single image. Comput. Graph. Forum 34, 116–126 (2015).

    Article 

    Google Scholar
     

  • Birukow, G. Purkinjesches Phänomen und Farbensehen beim Grasfrosch (Rana temporaria) 1. Z. Vgl. Physiol. 27, 41–79 (1939).

    Article 

    Google Scholar
     

  • Silver, P. H. Photopic spectral sensitivity of the neon tetra [Paracheirodon innesi (Myers)] found by the use of a dorsal light reaction. Vis. Res. 14, 329–334 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Von Holst, E. Über den Lichtrückenreflex bei Fischen. Publ. Stat. Zool. Napoli 15, 143–158 (1935).


    Google Scholar
     

  • Preuss, T. & Budelmann, B. U. A dorsal light reflex in a squid. J. Exp. Biol. 198, 1157–1159 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brodsky, M. C. Dissociated vertical divergence: perceptual correlates of the human dorsal light reflex. Arch. Ophthalmol. 120, 1174–1178 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Yager, D. Behavioural measures of the spectral sensitivity of the dark-adapted goldfish. Nature 220, 1052–1053 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, E. et al. Optic flow in the natural habitats of zebrafish supports spatial biases in visual self-motion estimation. Curr. Biol. 32, 5008–5021.e8 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Huang, R., Nörenberg, W. & Arrenberg, A. B. A robust receptive field code for optic flow detection and decomposition during self-motion. Curr. Biol. 32, 2505–2516.e8 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dehmelt, F. A. et al. Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish. eLife 10, e63355 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kretschmer, F., Ahlers, M. T., Ammermüller, J. & Kretzberg, J. Automated measurement of spectral sensitivity of motion vision during optokinetic behavior. Neurocomputing 84, 39–46 (2012).

    Article 

    Google Scholar
     

  • Moskowitz-Cook, A. The development of photopic spectral sensitivity in human infants. Vis. Res. 19, 1133–1142 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaerer, S. Die Wellenlängenabhängigkeit des Bewegungssehens bei Goldfischen (Carassius auratus) und Schildkröten (Pseudemys scripta elegans) gemessen mit der optomotorischen Reaktion. PhD thesis, Univ. Mainz (1993).

  • Maximov, V. V. Environmental factors which may have led to the appearance of colour vision. Phil. Trans. R. Soc. B 355, 1239–1242 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borst, A. & Euler, T. Seeing things in motion: models, circuits, and mechanisms. Neuron 71, 974–994 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cameron, D. A. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish. Vis. Neurosci. 19, 365–372 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Losey, G. S. et al. The UV visual world of fishes: a review. J. Fish. Biol. 54, 921–943 (1999).

    Article 

    Google Scholar
     

  • Bianco, I. H., Kampff, A. R. & Engert, F. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front. Syst. Neurosci. 5, 101 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janssen, J. Searching for zooplankton just outside Snell’s window. Limmol. Oceanogr. 26, 1168–1171 (1981).

    Article 

    Google Scholar
     

  • Mearns, D. S., Donovan, J. C., Fernandes, A. M., Semmelhack, J. L. & Baier, H. Deconstructing hunting behavior reveals a tightly coupled stimulus–response loop. Curr. Biol. 30, 54–69.e9 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitt, E. A. & Dowling, J. E. Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J. Comp. Neurol. 404, 515–536 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novales Flamarique, I. Diminished foraging performance of a mutant zebrafish with reduced population of ultraviolet cones. Proc. R. Soc. B 283, 20160058 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burton, C. E., Zhou, Y., Bai, Q. & Burton, E. A. Spectral properties of the zebrafish visual motor response. Neurosci. Lett. 646, 62–67 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guggiana-Nilo, D. A. & Engert, F. Properties of the visible light phototaxis and UV avoidance behaviors in the larval zebrafish. Front. Behav. Neurosci. 10, 160 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kane, E. et al. Sensorimotor structure of Drosophila larva phototaxis. Proc. Natl Acad. Sci. USA (2013).

  • Verasztó, C. et al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 7, e36440 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muntz, W. R. A. Effectiveness of different colors of light in releasing positive phototactic behavior of frogs, and a possible function of the retinal projection to the diencephalon. J. Neurophysiol. 25, 712–720 (1962).

    Article 

    Google Scholar
     

  • Hailman, J. P. & Jaeger, R. G. Phototactic responses to spectrally dominant stimuli and use of colour vision by adult anuran amphibians: a comparative survey. Anim. Behav. 22, 757–795 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muntz, W. R. A., Partridge, J. C., Williams, S. R. & Jackson, C. Spectral sensitivity in the guppy (Poecilia reticulata) measured using the dorsal light response. Mar. Freshw. Behav. Physiol. 28, 163–176 (1996).

    Article 

    Google Scholar
     

  • Magaña-Hernández, L. et al. The functionally plastic rod photoreceptors in the simplex retina of little skate (Leucoraja erinacea) exhibit a hybrid rod–cone morphology and enhanced synaptic connectivity. Preprint at bioRxiv https://doi.org/10.1101/2023.06.28.546621 (2023).

  • Seifert, M., Roberts, P. A., Kafetzis, G., Osorio, D. A. & Baden, T. Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nat. Commun. 14, 5308 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, K. et al. Evolutionary adaptation of visual pigments in geckos for their photic environment. Sci. Adv. 7, eabj1316 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, Y.-R. et al. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176, 1222–1237.e22 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Field, G. D. et al. Functional connectivity in the retina at the resolution of photoreceptors. Nature 467, 673–677 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arrese, C. A., Hart, N. S., Thomas, N., Beazley, L. D. & Shand, J. Trichromacy in Australian marsupials. Curr. Biol. 12, 657–660 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebeling, W., Natoli, R. C. & Hemmi, J. M. Diversity of color vision: not all Australian marsupials are trichromatic. PLoS ONE 5, e14231 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu, D. G. et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421, 526–529 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shu, D. G. et al. Lower Cambrian vertebrates from south China. Nature 402, 42–46 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Briggs, D. E. G. Extraordinary fossils reveal the nature of Cambrian life: a commentary on Whittington (1975) ‘The enigmatic animal Opabinia regalis, Middle Cambrian, Burgess Shale, British Columbia’. Phil. Trans. R. Soc. B 370, 20140313 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daley, A. C. & Edgecombe, G. D. Morphology of Anomalocaris canadensis from the Burgess Shale. J. Paleontol. 88, 68–91 (2014).

    Article 

    Google Scholar
     

  • Brazeau, M. D. & Friedman, M. The origin and early phylogenetic history of jawed vertebrates. Nature 520, 490–497 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moysiuk, J. & Caron, J.-B. A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation. Curr. Biol. 32, 3302–3316.e2 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luque, J. et al. Evolution of crab eye structures and the utility of ommatidia morphology in resolving phylogeny. Preprint at bioRxiv https://doi.org/10.1101/786087 (2019).

  • Alkaladi, A. & Zeil, J. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda). J. Comp. Neurol. 522, 1264–1283 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Didion, J. E. Spectral Sensitivity Underlying Two Different Visual Behaviors in the Fiddler Crab, Uca pugilator. PhD thesis, Univ. Cincinnati (2019).

  • Cronin, T. W. & Jinks, R. N. Ontogeny of vision in marine crustaceans. Am. Zool. 41, 1098–1107 (2001).


    Google Scholar
     

  • Cronin, T. W., Porter, M. L., Bok, M. J., Caldwell, R. L. & Marshall, J. Colour vision in stomatopod crustaceans. Phil. Trans. R. Soc. B 377, 20210278 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thoen, H. H., How, M. J., Chiou, T.-H. & Marshall, J. A different form of color vision in mantis shrimp. Science 343, 411–413 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arikawa, K. The eyes and vision of butterflies. J. Physiol. 595, 5457–5464 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnaitmann, C., Pagni, M. & Reiff, D. F. Color vision in insects: insights from Drosophila. J. Comp. Physiol. A 206, 183–198 (2020).

    Article 

    Google Scholar
     

  • Feuda, R. et al. Phylogenomics of opsin genes in Diptera reveals lineage-specific events and contrasting evolutionary dynamics in Anopheles and Drosophila. Genome Biol. Evol. 13, evab170 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borst, A. & Groschner, L. N. How flies see motion. Annu. Rev. Neurosci. 46, 17–37 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Longden, K. D., Rogers, E. M., Nern, A., Dionne, H. & Reiser, M. B. Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila. Nat. Commun. 14, 7695 (2023).

    Article 

    Google Scholar
     

  • Nilsson, D. E. The evolution of eyes and visually guided behaviour. Phil. Trans. R. Soc. B 364, 2833–2847 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buschbeck, E. & Bok, M. (eds) Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes (Springer, 2023).

  • Hanke, F. D. & Osorio, D. C. Editorial: Vision in cephalopods. Front. Physiol. 9, 18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment