Baden, T. Circuit mechanisms for colour vision in zebrafish. Curr. Biol. 31, R807–R820 (2021).
Dacey, D. M. & Packer, O. S. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 13, 421–427 (2003).
Nilsson, D.-E. The diversity of eyes and vision. Annu. Rev. Vis. Sci. 7, 19–41 (2021).
Cronin, T. W. & Bok, M. J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 219, 2790–2801 (2016).
Baden, T. & Osorio, D. The retinal basis of vertebrate color vision. Annu. Rev. Vis. Sci. 5, 177–200 (2019).
Hagen, J. F. D., Roberts, N. S. & Johnston, R. J. The evolutionary history and spectral tuning of vertebrate visual opsins. Dev. Biol. 493, 40–66 (2023).
Bartel, P., Janiak, F. K., Osorio, D. & Baden, T. Colourfulness as a possible measure of object proximity in the larval zebrafish brain. Curr. Biol. 31, R235–R236 (2021).
Kelber, A. Bird colour vision – from cones to perception. Curr. Opin. Behav. Sci. 30, 34–40 (2019).
Baden, T. From water to land: the evolution of photoreceptor circuits for vision on land. PLoS Biol., https://doi.org/10.1371/journal.pbio.3002422 (2024).
Qiu, Y. et al. Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations. Curr. Biol. https://doi.org/10.1016/j.cub.2021.05.017 (2021).
Baden, T. et al. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80, 1206–1217 (2013).
Nadal-Nicolás, F. M. et al. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 9, e56840 (2020).
Szatko, K. P. et al. Neural circuits in the mouse retina support color vision in the upper visual field. Nat. Commun. 11, 3481 (2020).
Denman, D. J. et al. Mouse color and wavelength-specific luminance contrast sensitivity are non-uniform across visual space. eLife 7, e31209 (2018).
Franke, K. et al. Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky. Preprint at bioRxiv https://doi.org/10.1101/2023.06.01.543054 (2023).
Yoshimatsu, T. et al. Ancestral circuits for vertebrate color vision emerge at the first retinal synapse. Sci. Adv. 7, 6815–6828 (2021).
Bartel, P., Yoshimatsu, T., Janiak, F. K. & Baden, T. Spectral inference reveals principal cone-integration rules of the zebrafish inner retina. Curr. Biol. (2021).
Krauss, A. & Neumeyer, C. Wavelength dependence of the optomotor response in zebrafish (Danio rerio). Vis. Res. 43, 1273–1282 (2003).
Khan, B. et al. Zebrafish larvae use stimulus intensity and contrast to estimate distance to prey. Curr. Biol. 33, 3179–3191.e4 (2023).
Cronly-Dillon, J. R. & Muntz, W. R. A. The spectral sensitivity of the goldfish and the clawed toad tadpole under photopic conditions. J. Exp. Biol. 42, 481–493 (1965).
Campenhausen, M. V. & Kirschfeld, K. Spectral sensitivity of the accessory optic system of the pigeon. J. Comp. Physiol. A 183, 1–6 (1998).
Wang, X., Roberts, P. A., Yoshimatsu, T., Lagnado, L. & Baden, T. Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina. Cell Rep. 42, 112055 (2023).
Kaneko, A. Receptive field organization of bipolar and amacrine cells in the goldfish retina. J. Physiol. 235, 133–153 (1973).
Feuda, R., Hamilton, S. C., McInerney, J. O. & Pisani, D. Metazoan opsin evolution reveals a simple route to animal vision. Proc. Natl Acad. Sci. USA 109, 18868–18872 (2012).
Baden, T., Euler, T. & Berens, P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21, 5–20 (2020).
Hart, N. S. Vision in sharks and rays: opsin diversity and colour vision. Semin. Cell Dev. Biol. 106, 12–19 (2020).
Seifert, M., Baden, T. & Osorio, D. The retinal basis of vision in chicken. Semin. Cell Dev. Biol. 106, 106–115 (2020).
van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G. & Kelber, A. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435–461 (2021).
Baden, T. Vertebrate vision: lessons from non-model species. Semin. Cell Dev. Biol. 106, 1–4 (2020).
Walls, G. L. The Vertebrate Eye and its Adaptive Radiation (Cranbrook Institute of Science, 1942).
Potier, S., Mitkus, M. & Kelber, A. Visual adaptations of diurnal and nocturnal raptors. Semin. Cell Dev. Biol. 106, 116–126 (2020).
Baden, T., Schubert, T., Berens, P. & Euler, T. The functional organization of vertebrate retinal circuits for vision. Oxf. Res. Encycl. Neurosci. https://doi.org/10.1093/acrefore/9780190264086.013.68 (2018).
Behrens, C. et al. Connectivity map of bipolar cells and photoreceptors in the mouse retina. eLife 5, 1206–1217 (2016).
Goetz, J. et al. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep. 40, 111040 (2022).
Günther, A. et al. Double cones and the diverse connectivity of photoreceptors and bipolar cells in an avian retina. J. Neurosci. 41, 5015–5028 (2021).
Collin, S. P. A web-based archive for topographic maps of retinal cell distribution in vertebrates. Clin. Exp. Optom. 91, 85–95 (2008).
Mass, A. M. Visual field organization and retinal resolution in the beluga whale Delphinapterus leucas (Pallas). Dokl. Biol. Sci. 381, 555–558 (2001).
Lisney, T. J., Wylie, D. R., Kolominsky, J. & Iwaniuk, A. N. Eye morphology and retinal topography in hummingbirds (Trochilidae: Aves). Brain Behav. Evol. 86, 176–190 (2015).
Ali, M.-A. & Anctil, M. Retinas of Fishes: An Atlas (Springer, 1976).
de Busserolles, F., Fogg, L., Cortesi, F. & Marshall, J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.05.027 (2020).
Bowmaker, J. K., Loew, E. R. & Ott, M. The cone photoreceptors and visual pigments of chameleons. J. Comp. Physiol. A https://doi.org/10.1007/s00359-005-0014-4 (2005).
Carleton, K. L., Escobar-Camacho, D., Stieb, S. M., Cortesi, F. & Justin Marshall, N. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J. Exp. Biol. 223, jeb193334 (2020).
Vorobyev, M. Ecology and evolution of primate colour vision. Clin. Exp. Optom. 87, 230–238 (2004).
Stieb, S. M. et al. A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Sci. Rep. 9, 16459 (2019).
Applebury, M. L. et al. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27, 513–523 (2000).
Ricci, V., Ronco, F., Boileau, N. & Salzburger, W. Visual opsin gene expression evolution in the adaptive radiation of cichlid fishes of Lake Tanganyika. Sci. Adv. 9, eadg6568 (2023).
Cortesi, F. et al. Visual system diversity in coral reef fishes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.06.007 (2020).
Bloomfield, S. A. & Dacheux, R. F. Rod vision: pathways and processing in the mammalian retina. Prog. Retin. Eye Res. 20, 351–384 (2001).
Li, Y. N., Tsujimura, T., Kawamura, S. & Dowling, J. E. Bipolar cell–photoreceptor connectivity in the zebrafish (Danio rerio) retina. J. Comp. Neurol. 520, 3786–3802 (2012).
Hellevik, A. M. et al. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.557433 (2023).
Mariani, A. P. Neuronal and synaptic organization of the outer plexiform layer of the pigeon retina. Am. J. Anat. 179, 25–39 (1987).
Yamagata, M., Yan, W. & Sanes, J. R. A cell atlas of the chick retina based on single-cell transcriptomics. eLife 10, e63907 (2021).
Hahn, J. et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature, https://doi.org/10.1038/s41586-023-06638-9 (2023).
Haverkamp, S. et al. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25, 5438–5445 (2005).
Tsukamoto, Y. & Omi, N. Classification of mouse retinal bipolar cells: type-specific connectivity with special reference to rod-driven aii amacrine pathways. Front. Neuroanat. 11, 92 (2017).
Yoshimatsu, T., Schröder, C., Nevala, N. E., Berens, P. & Baden, T. Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish. Neuron 107, 320–337.e6 (2020).
Zimmermann, M. J. Y. et al. Zebrafish differentially process color across visual space to match natural scenes. Curr. Biol. 28, 2018–2032.e5 (2018).
Schröder, C., Oesterle, J., Berens, P., Yoshimatsu, T. & Baden, T. Distinct synaptic transfer functions in same-type photoreceptors. eLife 10, e67851 (2021).
Novales Flamarique, I. Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc. R. Soc. B 280, 20122490 (2012).
Browman, H. I., Novales-Flamarique, I. & Hawryshyn, C. W. Ultraviolet photoreception contributes to prey search behaviour in two species of zooplanktivorous fishes. J. Exp. Biol. 186, 187–198 (1994).
Orger, M. B. & Baier, H. Channeling of red and green cone inputs to the zebrafish optomotor response. Vis. Neurosci. 22, 275–281 (2005).
Sinha, R. et al. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168, 413–426.e12 (2017).
Baudin, J., Angueyra, J. M., Sinha, R. & Rieke, F. S-cone photoreceptors in the primate retina are functionally distinct from L and M cones. eLife 8, e39166 (2019).
Packer, O. S., Verweij, J., Li, P. H., Schnapf, J. L. & Dacey, D. M. Blue–yellow opponency in primate S cone photoreceptors. J. Neurosci. 30, 568–572 (2010).
Toomey, M. B. & Corbo, J. C. Evolution, development and function of vertebrate cone oil droplets. Front. Neural Circuits 11, 97 (2017).
Kemmler, R., Schultz, K., Dedek, K., Euler, T. & Schubert, T. Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J. Neurosci. 34, 11826–11843 (2014).
Yedutenko, M., Howlett, M. H. C. & Kamermans, M. Enhancing the dark side: asymmetric gain of cone photoreceptors underpins their discrimination of visual scenes based on skewness. J. Physiol. 600, 123–142 (2022).
Kamermans, M., van Dijk, B. W. & Spekreijse, H. Color opponency in cone-driven horizontal cells in carp retina. Aspecific pathways between cones and horizontal cells. J. Gen. Physiol. 97, 819–843 (1991).
Woźniak, B. & Dera, J. Light Absorption in Sea Water (Springer, 2006).
Nityananda, V. & Read, J. C. A. Stereopsis in animals: evolution, function and mechanisms. J. Exp. Biol. 220, 2502–2512 (2017).
Yonas, A., Elieff, C. A. & Arterberry, M. E. Emergence of sensitivity to pictorial depth cues: charting development in individual infants. Infant Behav. Dev. 25, 495–514 (2002).
Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15, 507–519 (2014).
Bollmann, J. H. The zebrafish visual system: from circuits to behavior. Annu. Rev. Vis. Sci. 5, 269–293 (2019).
Robles, E., Laurell, E. & Baier, H. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity. Curr. Biol. 24, 2085–2096 (2014).
Roska, B. & Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583–587 (2001).
Bae, J. A. et al. Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell 173, 1293–1306.e19 (2018).
Kubo, F. et al. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81, 1344–1359 (2014).
Semmelhack, J. L. et al. A dedicated visual pathway for prey detection in larval zebrafish. eLife 3, e04878 (2014).
Kölsch, Y. et al. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron 109, 645–662.e9 (2020).
Zhou, M. et al. Zebrafish retinal ganglion cells asymmetrically encode spectral and temporal information across visual space. Curr. Biol. 30, 2927–2942.e7 (2020).
Lee, S. et al. An unconventional glutamatergic circuit in the retina formed by vGluT3 amacrine cells. Neuron 84, 708–715 (2014).
Jacoby, J. & Schwartz, G. W. Three small-receptive-field ganglion cells in the mouse retina are distinctly tuned to size, speed, and object motion. J. Neurosci. 37, 610–625 (2017).
Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002).
Briggman, K. L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).
Klaassen, L. J., de Graaff, W., Van Asselt, J. B., Klooster, J. & Kamermans, M. Specific connectivity between photoreceptors and horizontal cells in the zebrafish retina. J. Neurophysiol. 116, 2799–2814 (2016).
Torvund, M. M., Ma, T. S., Connaughton, V. P., Ono, F. & Nelson, R. F. Cone signals in monostratified and bistratified amacrine cells of adult zebrafish retina. J. Comp. Neurol. 525, 1532–1557 (2017).
Franke, K. et al. Inhibition decorrelates visual feature representations in the inner retina. Nature 542, 439–444 (2017).
Masland, R. H. The tasks of amacrine cells. Vis. Neurosci. 29, 3–9 (2012).
Rosa, J. M., Ruehle, S., Ding, H. & Lagnado, L. Crossover inhibition generates sustained visual responses in the inner retina. Neuron 90, 308–319 (2016).
Fornetto, C., Tiso, N., Pavone, F. S. & Vanzi, F. Colored visual stimuli evoke spectrally tuned neuronal responses across the central nervous system of zebrafish larvae. BMC Biol. 18, 172 (2020).
Guggiana Nilo, D. A., Riegler, C., Hübener, M. & Engert, F. Distributed chromatic processing at the interface between retina and brain in the larval zebrafish. Curr. Biol. 31, 1945–1953.e5 (2021).
Menzel, R. in Comparative Physiology and Evolution of Vision in Invertebrates (ed. Autrum, H.) 503–580 (Springer, 1979).
Wade, N. J. & Brožek, J. Purkinje’s Vision: The Dawning of Neuroscience (Pyschology Press, 2001).
Arpa, S., Ritschel, T., Myszkowski, K., Çapın, T. & Seidel, H.-P. Purkinje images: conveying different content for different luminance adaptations in a single image. Comput. Graph. Forum 34, 116–126 (2015).
Birukow, G. Purkinjesches Phänomen und Farbensehen beim Grasfrosch (Rana temporaria) 1. Z. Vgl. Physiol. 27, 41–79 (1939).
Silver, P. H. Photopic spectral sensitivity of the neon tetra [Paracheirodon innesi (Myers)] found by the use of a dorsal light reaction. Vis. Res. 14, 329–334 (1974).
Von Holst, E. Über den Lichtrückenreflex bei Fischen. Publ. Stat. Zool. Napoli 15, 143–158 (1935).
Preuss, T. & Budelmann, B. U. A dorsal light reflex in a squid. J. Exp. Biol. 198, 1157–1159 (1995).
Brodsky, M. C. Dissociated vertical divergence: perceptual correlates of the human dorsal light reflex. Arch. Ophthalmol. 120, 1174–1178 (2002).
Yager, D. Behavioural measures of the spectral sensitivity of the dark-adapted goldfish. Nature 220, 1052–1053 (1968).
Alexander, E. et al. Optic flow in the natural habitats of zebrafish supports spatial biases in visual self-motion estimation. Curr. Biol. 32, 5008–5021.e8 (2022).
Zhang, Y., Huang, R., Nörenberg, W. & Arrenberg, A. B. A robust receptive field code for optic flow detection and decomposition during self-motion. Curr. Biol. 32, 2505–2516.e8 (2022).
Dehmelt, F. A. et al. Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish. eLife 10, e63355 (2021).
Kretschmer, F., Ahlers, M. T., Ammermüller, J. & Kretzberg, J. Automated measurement of spectral sensitivity of motion vision during optokinetic behavior. Neurocomputing 84, 39–46 (2012).
Moskowitz-Cook, A. The development of photopic spectral sensitivity in human infants. Vis. Res. 19, 1133–1142 (1979).
Schaerer, S. Die Wellenlängenabhängigkeit des Bewegungssehens bei Goldfischen (Carassius auratus) und Schildkröten (Pseudemys scripta elegans) gemessen mit der optomotorischen Reaktion. PhD thesis, Univ. Mainz (1993).
Maximov, V. V. Environmental factors which may have led to the appearance of colour vision. Phil. Trans. R. Soc. B 355, 1239–1242 (2000).
Borst, A. & Euler, T. Seeing things in motion: models, circuits, and mechanisms. Neuron 71, 974–994 (2011).
Cameron, D. A. Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish. Vis. Neurosci. 19, 365–372 (2002).
Losey, G. S. et al. The UV visual world of fishes: a review. J. Fish. Biol. 54, 921–943 (1999).
Bianco, I. H., Kampff, A. R. & Engert, F. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front. Syst. Neurosci. 5, 101 (2011).
Janssen, J. Searching for zooplankton just outside Snell’s window. Limmol. Oceanogr. 26, 1168–1171 (1981).
Mearns, D. S., Donovan, J. C., Fernandes, A. M., Semmelhack, J. L. & Baier, H. Deconstructing hunting behavior reveals a tightly coupled stimulus–response loop. Curr. Biol. 30, 54–69.e9 (2020).
Schmitt, E. A. & Dowling, J. E. Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J. Comp. Neurol. 404, 515–536 (1999).
Novales Flamarique, I. Diminished foraging performance of a mutant zebrafish with reduced population of ultraviolet cones. Proc. R. Soc. B 283, 20160058 (2016).
Burton, C. E., Zhou, Y., Bai, Q. & Burton, E. A. Spectral properties of the zebrafish visual motor response. Neurosci. Lett. 646, 62–67 (2017).
Guggiana-Nilo, D. A. & Engert, F. Properties of the visible light phototaxis and UV avoidance behaviors in the larval zebrafish. Front. Behav. Neurosci. 10, 160 (2016).
Kane, E. et al. Sensorimotor structure of Drosophila larva phototaxis. Proc. Natl Acad. Sci. USA (2013).
Verasztó, C. et al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 7, e36440 (2018).
Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).
Muntz, W. R. A. Effectiveness of different colors of light in releasing positive phototactic behavior of frogs, and a possible function of the retinal projection to the diencephalon. J. Neurophysiol. 25, 712–720 (1962).
Hailman, J. P. & Jaeger, R. G. Phototactic responses to spectrally dominant stimuli and use of colour vision by adult anuran amphibians: a comparative survey. Anim. Behav. 22, 757–795 (1974).
Muntz, W. R. A., Partridge, J. C., Williams, S. R. & Jackson, C. Spectral sensitivity in the guppy (Poecilia reticulata) measured using the dorsal light response. Mar. Freshw. Behav. Physiol. 28, 163–176 (1996).
Magaña-Hernández, L. et al. The functionally plastic rod photoreceptors in the simplex retina of little skate (Leucoraja erinacea) exhibit a hybrid rod–cone morphology and enhanced synaptic connectivity. Preprint at bioRxiv https://doi.org/10.1101/2023.06.28.546621 (2023).
Seifert, M., Roberts, P. A., Kafetzis, G., Osorio, D. A. & Baden, T. Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nat. Commun. 14, 5308 (2023).
Kojima, K. et al. Evolutionary adaptation of visual pigments in geckos for their photic environment. Sci. Adv. 7, eabj1316 (2021).
Peng, Y.-R. et al. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176, 1222–1237.e22 (2019).
Field, G. D. et al. Functional connectivity in the retina at the resolution of photoreceptors. Nature 467, 673–677 (2010).
Arrese, C. A., Hart, N. S., Thomas, N., Beazley, L. D. & Shand, J. Trichromacy in Australian marsupials. Curr. Biol. 12, 657–660 (2002).
Ebeling, W., Natoli, R. C. & Hemmi, J. M. Diversity of color vision: not all Australian marsupials are trichromatic. PLoS ONE 5, e14231 (2010).
Shu, D. G. et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421, 526–529 (2003).
Shu, D. G. et al. Lower Cambrian vertebrates from south China. Nature 402, 42–46 (1999).
Briggs, D. E. G. Extraordinary fossils reveal the nature of Cambrian life: a commentary on Whittington (1975) ‘The enigmatic animal Opabinia regalis, Middle Cambrian, Burgess Shale, British Columbia’. Phil. Trans. R. Soc. B 370, 20140313 (2015).
Daley, A. C. & Edgecombe, G. D. Morphology of Anomalocaris canadensis from the Burgess Shale. J. Paleontol. 88, 68–91 (2014).
Brazeau, M. D. & Friedman, M. The origin and early phylogenetic history of jawed vertebrates. Nature 520, 490–497 (2015).
Moysiuk, J. & Caron, J.-B. A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation. Curr. Biol. 32, 3302–3316.e2 (2022).
Luque, J. et al. Evolution of crab eye structures and the utility of ommatidia morphology in resolving phylogeny. Preprint at bioRxiv https://doi.org/10.1101/786087 (2019).
Alkaladi, A. & Zeil, J. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda). J. Comp. Neurol. 522, 1264–1283 (2014).
Didion, J. E. Spectral Sensitivity Underlying Two Different Visual Behaviors in the Fiddler Crab, Uca pugilator. PhD thesis, Univ. Cincinnati (2019).
Cronin, T. W. & Jinks, R. N. Ontogeny of vision in marine crustaceans. Am. Zool. 41, 1098–1107 (2001).
Cronin, T. W., Porter, M. L., Bok, M. J., Caldwell, R. L. & Marshall, J. Colour vision in stomatopod crustaceans. Phil. Trans. R. Soc. B 377, 20210278 (2022).
Thoen, H. H., How, M. J., Chiou, T.-H. & Marshall, J. A different form of color vision in mantis shrimp. Science 343, 411–413 (2014).
Arikawa, K. The eyes and vision of butterflies. J. Physiol. 595, 5457–5464 (2017).
Schnaitmann, C., Pagni, M. & Reiff, D. F. Color vision in insects: insights from Drosophila. J. Comp. Physiol. A 206, 183–198 (2020).
Feuda, R. et al. Phylogenomics of opsin genes in Diptera reveals lineage-specific events and contrasting evolutionary dynamics in Anopheles and Drosophila. Genome Biol. Evol. 13, evab170 (2021).
Borst, A. & Groschner, L. N. How flies see motion. Annu. Rev. Neurosci. 46, 17–37 (2023).
Longden, K. D., Rogers, E. M., Nern, A., Dionne, H. & Reiser, M. B. Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila. Nat. Commun. 14, 7695 (2023).
Nilsson, D. E. The evolution of eyes and visually guided behaviour. Phil. Trans. R. Soc. B 364, 2833–2847 (2009).
Buschbeck, E. & Bok, M. (eds) Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes (Springer, 2023).
Hanke, F. D. & Osorio, D. C. Editorial: Vision in cephalopods. Front. Physiol. 9, 18 (2018).
Dr. Thomas Hughes is a UK-based scientist and science communicator who makes complex topics accessible to readers. His articles explore breakthroughs in various scientific disciplines, from space exploration to cutting-edge research.