Decoupling speciation and extinction reveals both abiotic and biotic drivers shaped 250 million years of diversity in crocodile-line archosaurs

  • Allan, R. P. Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (WMO, IPCC Secretariat, 2021).

  • Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).

    Article 

    Google Scholar
     

  • Harper, G. A. & Bunbury, N. Invasive rats on tropical islands: their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).


    Google Scholar
     

  • Benton, M. J. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323, 728–732 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strotz, L. C. et al. Getting somewhere with the Red Queen: chasing a biologically modern definition of the hypothesis. Biol. Lett. 14, 20170734 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Condamine, F. L., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. Proc. Natl Acad. Sci. USA 116, 20584–20590 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nesbitt, S. J. The Early Evolution of Archosaurs: Relationships and the Origin of Major Clades. Thesis, Columbia Univ. (2009).

  • Grigg, G. Biology and Evolution of Crocodylians (Csiro, 2015).

  • Baillie, J., Hilton-Taylor, C., Stuart, S. N. & IUCN Species Survival Commission. 2004 IUCN Red List of Threatened Species: A Global Species Assessment (IUCN, 2004).

  • Somaweera, R., Brien, M. L., Platt, S. G., Manolis, C. & Webber, B. L. Direct and indirect interactions with vegetation shape crocodylian ecology at multiple scales. Freshw. Biol. 64, 257–268 (2018).

    Article 

    Google Scholar
     

  • Stubbs, T. L. et al. Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation. Proc. Biol. Sci. 288, 20210069 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mannion, P. D. et al. Climate constrains the evolutionary history and biodiversity of crocodylians. Nat. Commun. 6, 8438 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jouve, S. & Jalil, N.-E. Paleocene resurrection of a crocodylomorph taxon: biotic crises, climatic and sea level fluctuations. Gondwana Res. 85, 1–18 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mannion, P. D., Chiarenza, A. A., Godoy, P. L. & Cheah, Y. N. Spatiotemporal sampling patterns in the 230 million year fossil record of terrestrial crocodylomorphs and their impact on diversity. Palaeontology 62, 615–637 (2019).

    Article 

    Google Scholar
     

  • Leardi, J. M., Yáñez, I. & Pol, D. South American crocodylomorphs (Archosauria; Crocodylomorpha): a review of the early fossil record in the continent and its relevance on understanding the origins of the clade. J. South Am. Earth Sci. 104, 102780 (2020).

    Article 

    Google Scholar
     

  • Foth, C., Sookias, R. B. & Ezcurra, M. D. Rapid initial morphospace expansion and delayed morphological disparity peak in the first 100 million years of the archosauromorph evolutionary radiation. Front. Earth Sci. Chin. 9, 723973 (2021).

    Article 

    Google Scholar
     

  • Buffetaut, E. Radiation evolutive, paleoecologie et biogeographie des crocodiliens mesosuchiens. Mem. S. Geo. F. 60, 88 (1981).


    Google Scholar
     

  • Ezcurra, M. D. & Butler, R. J. The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction. Proc. Biol. Sci. 285, 20180361 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godoy, P. L., Benson, R. B. J., Bronzati, M. & Butler, R. J. The multi-peak adaptive landscape of crocodylomorph body size evolution. BMC Evol. Biol. 19, 167 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melstrom, K. M. & Irmis, R. B. Repeated evolution of herbivorous crocodyliforms during the age of dinosaurs. Curr. Biol. 29, 2389–2395.e3 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilberg, E. W., Turner, A. H. & Brochu, C. A. Evolutionary structure and timing of major habitat shifts in Crocodylomorpha. Sci. Rep. 9, 514 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • State of the World’s Birds: Taking the Pulse of the Planet (BirdLife International, 2018).

  • Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hoffman, A. Mass extinctions, diversification, and the nature of paleontology. Rev. Esp. Paleontol. 1, 101–107 (1986).


    Google Scholar
     

  • von Reumont, B. M. et al. Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol. Biol. Evol. 29, 1031–1045 (2012).

    Article 

    Google Scholar
     

  • Laurent, S., Robinson-Rechavi, M. & Salamin, N. Detecting patterns of species diversification in the presence of both rate shifts and mass extinctions. BMC Evol. Biol. 15, 157 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, K. E., De Grave, S., Delmer, C. & Wills, M. A. Freshwater transitions and symbioses shaped the evolution and extant diversity of caridean shrimps. Commun. Biol. 1, 16 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crouch, N. M. A. & Clarke, J. A. Body size evolution in palaeognath birds is consistent with Neogene cooling-linked gigantism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 532, 109224 (2019).

    Article 

    Google Scholar
     

  • Clavel, J. & Morlon, H. Accelerated body size evolution during cold climatic periods in the Cenozoic. Proc. Natl Acad. Sci. USA 114, 4183–4188 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markwick, P. J. Crocodilian diversity in space and time: the role of climate in paleoecology and its implication for understanding K/T extinctions. Paleobiology 24, 470–497 (1998).

    Article 

    Google Scholar
     

  • Vasse, D. & Hua, S. Diversité des crocodiliens du Crétacé Supérieur et du Paléogene. Influneces et limites de la crise Maastrichtien-Paléocene et des ‘Terminal Eocene Events’. Oryctos 1, 65–77 (1998).


    Google Scholar
     

  • de Souza Carvalho, I., de Gasparini, Z. B., Salgado, L., de Vasconcellos, F. M. & da Silva Marinho, T. Climate’s role in the distribution of the Cretaceous terrestrial Crocodyliformes throughout Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297, 252–262 (2010).

    Article 

    Google Scholar
     

  • Claramunt, S. & Cracraft, J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, J. E., Amiot, R., Lécuyer, C. & Benton, M. J. Sea surface temperature contributes to marine crocodylomorph evolution. Nat. Commun. 5, 4658 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tennant, J., Mannion, P. D. & Upchurch, P. Environmental drivers of crocodyliform extinction across the Jurassic/Cretaceous transition. Proc. R. Soc. B. 283, 20152840 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Celis, A., Narváez, I. & Ortega, F. Spatiotemporal palaeodiversity patterns of modern crocodiles (Crocodyliformes: Eusuchia). Zool. J. Linn. Soc. 189, 635–656 (2020).

    Article 

    Google Scholar
     

  • Feduccia, A. ‘Big bang’ for tertiary birds? Trends Ecol. Evol. 18, 172–176 (2003).

    Article 

    Google Scholar
     

  • Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mudelsee, M., Bickert, T., Lear, C. H. & Lohmann, G. Cenozoic climate changes: a review based on time series analysis of marine benthic δ18O records. Rev. Geophys. 52, 333–374 (2014).

    Article 

    Google Scholar
     

  • Solórzano, A., Núñez-Flores, M., Inostroza-Michael, O. & Hernández, C. E. Biotic and abiotic factors driving the diversification dynamics of Crocodylia. Palaeontology 63, 415–429 (2020).

    Article 

    Google Scholar
     

  • Groh, S. S., Upchurch, P., Barrett, P. M. & Day, J. J. How to date a crocodile: estimation of neosuchian clade ages and a comparison of four time-scaling methods. Palaeontology 65, e12589 (2022).

    Article 

    Google Scholar
     

  • Darlim, G., Lee, M. S. Y., Walter, J. & Rabi, M. The impact of molecular data on the phylogenetic position of the putative oldest crown crocodilian and the age of the clade. Biol. Lett. 18, 20210603 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rio, J. P. & Mannion, P. D. Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem. PeerJ 9, e12094 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. S. Y. & Yates, A. M. Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record. Proc. Biol. Sci. 285, 20181071 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toljagić, O. & Butler, R. J. Triassic–Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs. Biol. Lett. 9, 20130095 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pol, D. & Leardi, J. M. Diversity patterns of Notosuchia (Crocodyliformes, Mesoeucrocodylia) during the Cretaceous of Gondwana. Publ. Electron. Asoc. Paleontol. Argent. 15, 172–186 (2015).


    Google Scholar
     

  • Kellner, A. W. A., Pinheiro, A. E. P. & Campos, D. A. A new Sebecid from the Paleogene of Brazil and the crocodyliform radiation after the K–Pg boundary. PLoS ONE 9, e81386 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paolillo, A. & Linares, O. J. Nuevos cocodrilos sebecosuchia del cenozoico suramericano (Mesosuchia: Crocodylia). Paleobiologia Neotropical 3, 1–25 (2007).


    Google Scholar
     

  • Salisbury, S. W. & Willis, P. M. A. A new crocodylian from the Early Eocene of south-eastern Queensland and a preliminary investigation of the phylogenetic relationships of crocodyloids. Alcheringa 20, 179–226 (1996).

    Article 

    Google Scholar
     

  • Mead, J. I. et al. New extinct Mekosuchine crocodile from Vanuatu, South Pacific. Copeia 2002, 632–641 (2002).

    Article 

    Google Scholar
     

  • Scheyer, T. M. et al. Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics. Nat. Commun. 4, 1907 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salas-Gismondi, R. et al. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands. Proc. Biol. Sci. 282, 20142490 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, M. T., Bell, M. A., de Andrade, M. B. & Brusatte, S. L. Body size estimation and evolution in metriorhynchid crocodylomorphs: implications for species diversification and niche partitioning. Zool. J. Linn. Soc. 163, 1199–1216 (2011).

    Article 

    Google Scholar
     

  • Johnson, M. M., Young, M. T. & Brusatte, S. L. The phylogenetics of Teleosauroidea (Crocodylomorpha, Thalattosuchia) and implications for their ecology and evolution. PeerJ 8, e9808 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brochu, C. A. A new Late Cretaceous gavialoid crocodylian from eastern North America and the phylogenetic relationships of thoracosaurs. J. Vert. Paleontol. 24, 610–633 (2004).

    Article 

    Google Scholar
     

  • Jouve, S. et al. The oldest African crocodylian: phylogeny, paleobiogeography, and differential survivorship of marine reptiles through the Cretaceous–Tertiary boundary. J. Vert. Paleontol. 28, 409–421 (2008).

    Article 

    Google Scholar
     

  • Vermeij, G. J. Biogeography and Adaptation: Patterns of Marine Life (Harvard Univ. Press, 1978).

  • Vrba, E. S. Evolution, species and fossils: how does life evolve. S. Afr. J. Sci. 76, 61–84 (1980).


    Google Scholar
     

  • Kozak, K. H. & Wiens, J. J. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13, 1378–1389 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Stockdale, M. T. & Benton, M. J. Environmental drivers of body size evolution in crocodile-line archosaurs. Commun. Biol. 4, 38 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colbert, E. H., Cowles, R. B. & Cowles, R. B. Temperature tolerances in the American alligator and their bearing on the habits, evolution, and extinction of the dinosaurs. Bull. Am. Mus. Nat. Hist. 86, 7 (1946).


    Google Scholar
     

  • Markwick, P. J. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 137, 205–271 (1998).

    Article 

    Google Scholar
     

  • Legendre, L. J., Guénard, G., Botha-Brink, J. & Cubo, J. Palaeohistological evidence for ancestral high metabolic rate in archosaurs. Syst. Biol. 65, 989–996 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cubo, J. et al. Were Notosuchia (Pseudosuchia: Crocodylomorpha) warm-blooded? A palaeohistological analysis suggests ectothermy. Biol. J. Linn. Soc. Lond. 131, 154–162 (2020).

    Article 

    Google Scholar
     

  • Estes, R. & Howard Hutchison, J. Eocene lower vertebrates from Ellesmere Island, Canadian Arctic Archipelago. Palaeogeogr. Palaeoclimatol. Palaeoecol. 30, 325–347 (1980).

    Article 

    Google Scholar
     

  • Pinceel, T. et al. Environmental change as a driver of diversification in temporary aquatic habitats: does the genetic structure of extant fairy shrimp populations reflect historic aridification? Freshw. Biol. 58, 1556–1572 (2013).

    Article 

    Google Scholar
     

  • Dorn, A., Musilová, Z., Platzer, M., Reichwald, K. & Cellerino, A. The strange case of East African annual fishes: aridification correlates with diversification for a savannah aquatic group? BMC Evol. Biol. 14, 210 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tennant, J. P., Mannion, P. D. & Upchurch, P. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nat. Commun. 7, 12737 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Hengstum, P. J., Cresswell, J. N., Milne, G. A. & Iliffe, T. M. Development of anchialine cave habitats and karst subterranean estuaries since the last ice age. Sci. Rep. 9, 11907 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klausen, T. G., Paterson, N. W. & Benton, M. J. Geological control on dinosaurs’ rise to dominance: Late Triassic ecosystem stress by relative sea level change. Terra Nova 32, 434–441 (2020).

    Article 

    Google Scholar
     

  • Benson, R. B. J. & Butler, R. J. Uncovering the diversification history of marine tetrapods: ecology influences the effect of geological sampling biases. Geol. Soc. Spec. Publ. 358, 191–208 (2011).

    Article 

    Google Scholar
     

  • Jones, L. A. & Eichenseer, K. Uneven spatial sampling distorts reconstructions of Phanerozoic seawater temperature. Geology 50, 238–242 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wellborn, G. A. & Langerhans, R. B. Ecological opportunity and the adaptive diversification of lineages. Ecol. Evol. 5, 176–195 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. American Society of Naturalists E. O. Wilson award address. Am. Nat. 175, 623–639 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Aristide, L. & Morlon, H. Understanding the effect of competition during evolutionary radiations: an integrated model of phenotypic and species diversification. Ecol. Lett. 22, 2006–2017 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gamisch, A. & Comes, H. P. Clade-age-dependent diversification under high species turnover shapes species richness disparities among tropical rainforest lineages of Bulbophyllum (Orchidaceae). BMC Evol. Biol. 19, 93 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenberg, D. A. & Mooers, A. Ø. Linking speciation to extinction: diversification raises contemporary extinction risk in amphibians. Evol. Lett. 1, 40–48 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jouve, S., Bouya, B. & Amaghzaz, M. A long-snouted dyrosaurid (crocodyliformes, mesoeucrocodylia) from the Paleocene of Morocco: phylogenetic and palaeobiogeographic implications. Palaeontology 51, 281–294 (2008).

    Article 

    Google Scholar
     

  • Spiridonov, A. & Lovejoy, S. Life rather than climate influences diversity at scales greater than 40 million years. Nature 607, 307–312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewitus, E., Bittner, L., Malviya, S., Bowler, C. & Morlon, H. Clade-specific diversification dynamics of marine diatoms since the Jurassic. Nat. Ecol. Evol. 2, 1715–1723 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valente, L. M., Savolainen, V. & Vargas, P. Unparalleled rates of species diversification in Europe. Proc. Biol. Sci. 277, 1489–1496 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, K. E., Hill, J., Astrop, T. I. & Wills, M. A. Global cooling as a driver of diversification in a major marine clade. Nat. Commun. 7, 13003 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, C., Davis, K. E., Delmer, C., Yang, D. & Wills, M. A. Elevated atmospheric CO2 promoted speciation in mosquitoes (Diptera, Culicidae). Commun. Biol. 1, 182 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomson, R. C., Spinks, P. Q. & Shaffer, H. B. A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins. Proc. Natl Acad. Sci. USA 118, e2012215118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rose, J. P. et al. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Mol. Phylogenet. Evol. 122, 59–79 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Davis, K. E. et al. Ecological transitions and the shape of the decapod tree of life. Integr. Comp. Biol. 62, 332–344 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, J. B., Davis, K. E., Dodd, H. O., Wills, M. A. & Priest, N. K. Speciation across the Earth driven by global cooling in terrestrial orchids. Proc. Natl Acad. Sci. USA 120, e2102408120 (2022).

    Article 

    Google Scholar
     

  • Lloyd, G. T., Bapst, D. W., Friedman, M. & Davis, K. E. Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds. Biol. Lett. 12, 20160609 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, A. M., Lloyd, G. T. & Hillis, D. M. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Syst. Biol. 65, 602–611 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Peters, S. E. & McClennen, M. The Paleobiology Database application programming interface. Paleobiology 42, 1–7 (2016).

    Article 

    Google Scholar
     

  • Baum, B. R. & Ragan, M. A. The MRP method. In Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life (ed. Bininda-Emonds, O. R. P.) 17–34 (Springer, 2004).

  • Oaks, J. R. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65, 3285–3297 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Swofford, D. L. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0 b8 (Sinauer, 2001).

  • Walker, J. D., Geissman, J. W., Bowring, S. A. & Babcock, L. E. Geologic Time Scale v. 5.0 (Geological Society of America, 2018).

  • Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irmis, R. B., Nesbitt, S. J. & Sues, H.-D. Early Crocodylomorpha. Geol. Soc. Spec. Publ. 379, 275–302 (2013).

    Article 

    Google Scholar
     

  • Turner, A. H., Pritchard, A. C. & Matzke, N. J. Empirical and Bayesian approaches to fossil-only divergence times: a study across three reptile clades. PLoS ONE 12, e0169885 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, J. S., Etienne, R. S. & Rabosky, D. L. Inferring diversification rate variation from phylogenies with fossils. Syst. Biol. 68, 1–18 (2019).

    PubMed 

    Google Scholar
     

  • Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).

    Article 

    Google Scholar
     

  • Veizer, J. et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haq, B. U., Hardenbol, J. & Vail, P. R. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1167 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prokoph, A., Shields, G. A. & Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci. Rev. 87, 113–133 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kristoufek, L. Measuring correlations between non-stationary series with DCCA coefficient. Physica A 402, 291–298 (2014).

    Article 

    Google Scholar
     

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • R Core Team R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2015).

  • Koehn, C. R., Petrie, M. D., Bradford, J. B., Litvak, M. E. & Strachan, S. Seasonal precipitation and soil moisture relationships across forests and woodlands in the southwestern United States. J. Geophys. Res. Biogeosci. 126, e2020JG005986 (2021).

    Article 

    Google Scholar
     

  • Dunhill, A. M., Hannisdal, B. & Benton, M. J. Disentangling rock record bias and common-cause from redundancy in the British fossil record. Nat. Commun. 5, 4818 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liow, L. H., Reitan, T. & Harnik, P. G. Ecological interactions on macroevolutionary time scales: clams and brachiopods are more than ships that pass in the night. Ecol. Lett. 18, 1030–1039 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steeg, G. V., Ver Steeg, G. & Galstyan, A. Information transfer in social media. In Proceedings of the 21st International conference on World Wide Web, 509–518 (2012).

  • Lungarella, M., Pitti, A. & Kuniyoshi, Y. Information transfer at multiple scales. Phys. Rev. E 76, 056117 (2007).

    Article 

    Google Scholar
     

  • Behrendt, S., Dimpfl, T., Peter, F. J. & Zimmermann, D. J. RTransferEntropy—quantifying information flow between different time series using effective transfer entropy. SoftwareX 10, 100265 (2019).

    Article 

    Google Scholar
     

  • Visser, I. & Speekenbrink, M. depmixS4: an R package for hidden Markov models. J. Stat. Softw. 36, 1–21 (2010). Others.

    Article 

    Google Scholar
     

  • Title, P. O. & Rabosky, D. L. Do macrophylogenies yield stable macroevolutionary inferences? An example from squamate reptiles. Syst. Biol. 66, 843–856 (2017).

    PubMed 

    Google Scholar
     

  • Wilberg, E. W. What’s in an outgroup? The impact of outgroup choice on the phylogenetic position of Thalattosuchia (Crocodylomorpha) and the origin of Crocodyliformes. Syst. Biol. 64, 621–637 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, A. S. & Butler, R. J. A new phylogenetic analysis of Phytosauria (Archosauria: Pseudosuchia) with the application of continuous and geometric morphometric character coding. PeerJ 6, e5901 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, M. A. & Lloyd, G. T. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58, 379–389 (2015).

    Article 

    Google Scholar
     

  • Reference

    Denial of responsibility! Elite News is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a comment